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Introduction .
Overview

ability problems

Multiple decidability results are known for finitely branching
WSTS.
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Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

[ | Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC'12),

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
m Parametric WSTS.
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Proposition

Finite branching is undecidable for post-effective WSTS.

Proof

m Let S; = (N, —s, <) be the WSTS such that:

B x —s x + 1 if TM; does not halt within < x steps,
m x —s 0,1,2,...otherwise.

m S; is post-effective (the cardinal of Posts.(x) is computable).

m S; has strong and strict monotony since x —s, x + 1 for every
x € N.

m TM; halts iff there exist x € N and an execution 0 i>5,. X such
that Postg,(x) is infinite.

m The halting problem thus Turing-reduces to the infinite
branching problem.
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We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

m Termination,
m Coverability,

m Boundedness.
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Reachability problems

Termination
Input: (X, —,<) a WSTS, x € X.
Question: dxg — x1 — xo — ...7

Theorem (deduced from Dufourd, Janéar & Schnoebelen ICALP’'99)

Termination is undecidable for infinitely branching WSTS.



Introduction

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?




Introduction

Overv
WSTS
Reachability problems

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Remark

Strong termination and termination are the same in finitely
branching WSTS.
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Reachability problems

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Theorem

Strong termination is decidable for infinitely branching WSTS
under some assumptions.
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WSTS completion Ideals
Completion

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool

Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq in STACS'09 and ICALP'09.
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WSTS completion Ideals

Completion

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

D downward closed =— D = U Ideals

finite

Corollary

Every downward closed set decomposes canonically as the union of
its maximal ideals.
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Completion

Completion

o~ —~

The completion of S = (X, —s,<)is S = (X, —2 C) such that

= X = Ideals(X),
m /s Jif JPost()= . UJU...
—_———

canonical decomposition
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WSTS completion Ideals
Completion

Theorem

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,
m S has (strong) monotony,

m Sis not always a WSTS (Janéar IPL'99).

Jancar IPL'99

A wqo < is a w?-wqo iff <# is a wqo, where <¥ is the Hoare
ordering defined by A <# B iff 1 B C1 A.

Theorem
Let S be a WSTS, then S is a WSTS iff S is a w2-WSTS.

13 /24
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Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with transitive monotony, then

m if x £>5 y, then for every ideal | D | x there exists an ideal
J 2 Ly such that | < J,

m if / Lg J, then for every y € J there exists x € [ such that

>k
x=—sy >y.
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Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with strong monotony, then

mif x i)s v, then for every ideal / D | x there exists an ideal
J 2 Ly such that | < J,

m if / i)g J, then for every y € J there exists x € [ such that
k /
X=sy 2y.

14 /24



Termination
Applications Coverability

Relations between S and S

A generality

The completion S = ()A(, — C) computes exactly the downward
closure of the reachability set of its original system
S = (X, —S, S)

An equality
We have: Post3(| x)= Posts(x).

In fact, it is more exactly:

If Posté(ix) ={h,...,dn} then | Posts(x) =S U...UJ,.
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transitive monotony and such that S is a post-effective WSTS.
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Theorem

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

Post(® O0O) = O@O0. 0O®@0.0& 0. ...
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Theorem

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Proof

m Executions bounded in S iff bounded in S.

G finitely branching, can decide termination in S by Finkel
ICALP’87, Finkel & Schnoebelen TCS'01.
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Input: (X, —,<) a WSTS, xp,x € X.
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Prebasis computability

Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F3

The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y > x.

Prebasis is not computable for 3

Let S; = (N, —s;, <) be the WSTS such that:

m x —5, 0 if TM; does not halt on its encoding in < x steps,
m x —g, 1 otherwise.

Then S; € F; and S; is effective.

18 /24



Termination
Applications Coverability

Three Pre sets

m Pres,(0) = {x € N: TM; does not halt in < x steps },
m Pres, (1) = {x € N: TM; halts in < x steps },
m Pres,(x) =0 for x > 2.
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m Pres,(0) = {x € N: TM; does not halt in < x steps },
m Pres, (1) = {x € N: TM; halts in < x steps },
m Pres,(x) =0 for x > 2.

Conclusion: prebasis is not computable for F;

m Therefore, 1 Pres,(11) = 1 Pres;(1) = Preg,(1).
m If an algorithm outputting a finite basis of 1 Pregs, (1 1)
then it would be possible to decide whether Preg,(1) =
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m But Preg,(1) = 0 iff TM; does not halt.

m The halting problem thus Turing-reduces to the prebasis
computation.
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Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

m We build a reachability tree T with root ¢y labelled xg.

m If Posts(xp) is infinite, then we return “unbounded”,
otherwise we mark cg and for every x € Posts(xp) we add a
child labelled x to ¢p.

m If ¢ has an ancestor ¢’ labelled x’ such that x’ < x, we return
“unbounded”. Otherwise,

m if ¢ has an ancestor ¢’ labelled x’ such that x’ = x, we mark c.
m Otherwise, if Posts(x) is infinite, then we return “unbounded”.
Otherwise we mark ¢ and for every y € Posts(x) we add a

child labelled y to c.

m 7 is finite and correct.
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Conclusion

Further result for infinitely branching WSTS

Strong maintainability is decidable for WSTS with strong
monotony and such that S is a post-effective WSTS.
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m  general class of infinitely branching WSTS with a
Karp-Miller procedure?

m Toward the algorithmics of complete WSTS.

m What else can we do with the WSTS completion?



Conclusion

Thank you!
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