Handling Infinitely Branching WSTS

Michael Blondin 1 2, Alain Finkel® & Pierre McKenzie 1 2

1LSV, ENS Cachan

2DIRO, Université de Montréal

PV 2015, Madrid, September 4, 2015

Introduction

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

EXampIe Of WSTS Petrl nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

EXampIe Of WSTS Petrl nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

EXampIe Of WSTS Petrl nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction .
Overview

ability problems

Multiple decidability results are known for finitely branching
WSTS.

EXampIe Of WSTS Petrl nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)
()—0—0O O
L _/

Post(® OO) = O®O

N

24

Introduction

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

N

24

Introduction

Overview

ability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

EXampIe Of WSTS W_Pet” nets (Geeraerts, HeuBner, Praveen & Raskin PN'13)

PosttO O0) = O®O0. 0O®0.0®0. ...

N)

24

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

X set,

]
n — QX X X, @—»D—»O—» O
m monotony, J

(]

well-quasi-ordered.

Introduction .
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

m N3,

m — CX x X, @@—»O
E monotony,

m well-quasi-ordered.

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

X set,

]
 — QN3 X N3, @—»D—»O—» O
m monotony, J

(]

well-quasi-ordered.

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

X set, WO

— CX x X,

[]
[]
m monotony,
]

well-quasi-ordered. WO

AN

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

X set, WO

— CX x X,

[]
[]
m monotony,
]

well-quasi-ordered. WO

AN

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

X set, WO

— CX x X,

[]
[]
m monotony,
]

well-quasi-ordered. @@_’O

AN

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X,—, <) where

m X set, o -y

B — CX x X, A A

® monotony, x' =y 3
m well-quasi-ordered.

Introduction .
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

m X set, Vx — y
m — CX x X, A A
m transitive monotony, x' - y' J

m well-quasi-ordered.

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

m X set, Vx — y
B — CX x X, A A
m strong monotony, X |= ¥y 5

m well-quasi-ordered.

Introduction e
Overview

WSTS

Reachability problems

Well-structured transition system (Finkel ICALP'87, Finkel & Schnoebelen TCS'01)

S = (X, —, <) where

m X set,
m — CX x X,
® monotony,
|

well-quasi-ordered:
Vxo,Xx1,... i <j st. x; < X.

Introduction Ov

WSTS
Reachability problems

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Introduction

Ov
WSTS

Rea

ability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some finitely branching WSTS

m Petri nets, vector addition systems,

Introduction

Ov
WSTS

Rea

ability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some finitely branching WSTS

m Petri nets, vector addition systems,

m Counter machines with affine updates,

Introduction

Ov
WSTS

Rea

ability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some finitely branching WSTS

m Petri nets, vector addition systems,

m Counter machines with affine updates,

m Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),

Introduction

Ov
WSTS

Rea

ability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some finitely branching WSTS

m Petri nets, vector addition systems,

m Counter machines with affine updates,
m Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS'96),

m Much more.

Introduction

Reachability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

Introduction

Ovel
WSTS
Reachability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

[| Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC'12),

Introduction
Overview

WSTS
Reachability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

[| Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC'12),
m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),

Introduction

Overview
WSTS
Reachability problems

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

[| Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC'12),

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
m Parametric WSTS.

Introduction

bility problems

Finite branching is undecidable for post-effective WSTS.

Introduction

Overview
WSTS
Reachability problems

Finite branching is undecidable for post-effective WSTS.

m Let S; = (N, —s, <) be the WSTS such that:

B x —s x + 1 if TM; does not halt within < x steps,
m x —s 0,1,2,...otherwise.

Introduction

Overview
WSTS
Reachability problems

Finite branching is undecidable for post-effective WSTS.

m Let S; = (N, —s, <) be the WSTS such that:

B x —s x + 1 if TM; does not halt within < x steps,
m x —s 0,1,2,...otherwise.

m S; is post-effective (the cardinal of Posts.(x) is computable).

m S; has strong and strict monotony since x —s, x + 1 for every
x € N.

Introduction

Overview
WSTS
Reachability problems

Proposition

Finite branching is undecidable for post-effective WSTS.

Proof

m Let S; = (N, —s, <) be the WSTS such that:

B x —s x + 1 if TM; does not halt within < x steps,
m x —s 0,1,2,...otherwise.

m S; is post-effective (the cardinal of Posts.(x) is computable).

m S; has strong and strict monotony since x —s, x + 1 for every
x € N.

m TM; halts iff there exist x € N and an execution 0 i>5,. X such
that Postg,(x) is infinite.

m The halting problem thus Turing-reduces to the infinite
branching problem.

Introduction Ove

WSTS
Reachability problems

Objective

We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

6 /24

Introduction Ove

WSTS
Reachability problems

Objective

We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

m Termination,

6 /24

Introduction Ove

WSTS
Reachability problems

Objective

We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

m Termination,

m Coverability,

6 /24

Introduction Ove

WSTS
Reachability problems

Objective

We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

m Termination,
m Coverability,

m Boundedness.

6 /24

Introduction o

WSTS
Reachability problems

Termination

Input: (X, —,<) a WSTS, xp € X.

Question: 3Ixg — x1 — x0 — ...7

Introduction

Ov
WS
Reachability problems

Termination
Input: (X, —,<) a WSTS, xp € X.

Question: 3Ixg — x1 — x0 — ...7

Theorem (Finkel ICALP’87)

Termination is decidable for finitely branching WSTS with
transitive monotony.

Introduction

Reachability problems

Termination
Input: (X, —,<) a WSTS, x € X.
Question: dxg — x1 — xo — ...7

Theorem (deduced from Dufourd, Janéar & Schnoebelen ICALP’'99)

Termination is undecidable for infinitely branching WSTS.

Introduction

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Introduction

Overv
WSTS
Reachability problems

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Remark

Strong termination and termination are the same in finitely
branching WSTS.

Introduction

Ov
WS
Reachability problems

Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: dk bounding length of executions from xg?

Theorem

Strong termination is decidable for infinitely branching WSTS
under some assumptions.

WSTS completion Ideals
Completion

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

WSTS completion Ideals
Completion

Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool

Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq in STACS'09 and ICALP'09.

WSTS completion Ideals
Completion

Ideals

| C X is an ideal if

m downward closed: [= |/,

10 /24

WSTS completion Ideals
Completion

Ideals

| C X is an ideal if

m downward closed: [= |/,
m directed: a, b€/ = dcelst. a<cand b<c.

10 /24

WSTS completion Ideals
Completion

Ideals

| C X is an ideal if

m downward closed: [= |/,
m directed: a, b€l = dcelst. a<cand b<c.

10 /24

WSTS completion Ideals
Completion

Ideals

| C X is an ideal if

m downward closed: [= |/,
m directed: a, b€/ = dcelst. a<cand b<c.

10 /24

WSTS completion Ideals
Completion

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

D downward closed =— D = U Ideals

finite

11 /24

WSTS completion Ideals

Completion

Theorem (Finkel & Goubault-Larrecq ICALP'09; Goubault-Larrecq '14)

D downward closed =— D = U Ideals

finite

Corollary

Every downward closed set decomposes canonically as the union of
its maximal ideals.

11 /24

WSTS completion Ideals

Completion

Completion

o~ —~

The completion of S = (X, —s,<)is S = (X, —2 C) such that

12 /24

WSTS completion Ideals

Completion

Completion

o~ —~

The completion of S = (X, —s,<)is S = (X, —2 C) such that

= X = Ideals(X),

12 /24

WSTS completion Ideals

Completion

Completion

o~ —~

The completion of S = (X, —s,<)is S = (X, —2 C) such that

= X = Ideals(X),
m /s Jif JPost()= . UJU...
—_———

canonical decomposition

12 /24

WSTS completion Ideals
Completion

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,

13 /24

WSTS completion Ideals
Completion

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,

m S has (strong) monotony,

13 /24

WSTS completion Ideals
Completion

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,
m S has (strong) monotony,

m Sis not always a WSTS (Janéar IPL'99).

13 /24

WSTS completion Ideals
Completion

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,
m S has (strong) monotony,

m Sis not always a WSTS (Janéar IPL'99).

Jancar IPL'99

A wqo < is a w?-wqo iff <# is a wqo, where <# is the Hoare
ordering defined by A <# B iff 1 B C1 A.

13 /24

WSTS completion Ideals
Completion

Theorem

Let S = (X, —s,<) be a WSTS, then S = ()A(,—>§, C) is such
that:

mSis finitely branching,
m S has (strong) monotony,

m Sis not always a WSTS (Janéar IPL'99).

Jancar IPL'99

A wqo < is a w?-wqo iff <# is a wqo, where <¥ is the Hoare
ordering defined by A <# B iff 1 B C1 A.

Theorem
Let S be a WSTS, then S is a WSTS iff S is a w2-WSTS.

13 /24

Termination
Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

. k
mif x =5y,

14 /24

Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / D | x

14 /24

Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J2ly

14 /24

Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

14 /24

Termination
Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

mif I 55,

14 /24

Termination
Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

m if / £>§ J, then for every y € J

14 /24

Termination
Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

m if / £>§ J, then for every y € J there exists x € /

14 /24

Termination
Applications Coverability

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

mif / £>§ J, then for every y € J there exists x € / such that
xSsy >y.

14 /24

Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with transitive monotony, then

m if x £>5 y, then for every ideal | D | x there exists an ideal
J 2 Ly such that | < J,

m if / Lg J, then for every y € J there exists x € [such that

>k
x=—sy >y.

14 /24

Applications

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with strong monotony, then

mif x i)s v, then for every ideal / D | x there exists an ideal
J 2 Ly such that | < J,

m if / i)g J, then for every y € J there exists x € [such that
k /
X=sy 2y.

14 /24

Termination
Applications Coverability

Relations between S and S

A generality

The completion S = ()A(, — C) computes exactly the downward
closure of the reachability set of its original system
S = (X, —S, S)

An equality
We have: Post3(| x)= Posts(x).

In fact, it is more exactly:

If Posté(ix) ={h,...,dn} then | Posts(x) =S U...UJ,.

15 /24

Applications

Theorem

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

16 /24

Termination
Applications Coverability

Theorem

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

Post(® O0O) = O@O0. 0O®@0.0& 0. ...

16 /24

Termination
Applications Coverability

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

m Executions bounded in S iff bounded in S.

16 /24

Termination
Applications Coverability

Theorem

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Proof

m Executions bounded in S iff bounded in S.

G finitely branching, can decide termination in S by Finkel
ICALP’87, Finkel & Schnoebelen TCS'01.

16 /24

Termination
Applications Coverability

Coverability
Input: (X, —,<) a WSTS, xo,x € X.

Question: xg — x' > x?

17 /24

Termination
Applications Coverability

Coverability
Input: (X, —,<) a WSTS, xg,x € X.
Question: xg € TPre*(1x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 1C’00)

Compute 1 Pre* (1 x) iteratively assuming 1 Pre(1 x) computable.

17 /24

Termination
Applications Coverability

Coverability
Input: (X, —,<) a WSTS, xg,x € X.
Question: xg € TPre*(1x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 1C’00)

Compute 1 Pre*(1 x) iteratively assuming 1 Pre(1 x) computable.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method
Coverability:
m Enumerate executions | xg i>§ /,

m Accept if x € [.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
1 Posts(D) C D
m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:
m Enumerate D=L U... U/

m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed

m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D

m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.
Non coverability:
m Enumerate D C X downward closed, | xp C L U...U Iy

m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, Jj s.t. | xp C /;

m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Coverability

Input: (X, —,<) a WSTS, xp,x € X.
Question: x € | Post*(xp)?

Forward method

Coverability:
m Enumerate executions | xg i>§ /,
m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
1 Posts(D) C D
m Reject if x ¢ D.

17 /24

Termination
Applications Coverability

Prebasis computability

Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

18 /24

Termination
Applications Coverability

Prebasis computability

Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F3

The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y > x.

18 /24

Termination
Applications Coverability

Prebasis computability

Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F3

The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y > x.

Prebasis is not computable for 3

Let S; = (N, —s;, <) be the WSTS such that:

m x —5, 0 if TM; does not halt on its encoding in < x steps,

m x —g, 1 otherwise.

18 /24

Termination
Applications Coverability

Prebasis computability

Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F3

The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y > x.

Prebasis is not computable for 3

Let S; = (N, —s;, <) be the WSTS such that:

m x —5, 0 if TM; does not halt on its encoding in < x steps,
m x —g, 1 otherwise.

Then S; € F; and S; is effective.

18 /24

Termination
Applications Coverability

Three Pre sets

m Pres,(0) = {x € N: TM; does not halt in < x steps },
m Pres, (1) = {x € N: TM; halts in < x steps },
m Pres,(x) =0 for x > 2.

19 /24

Termination
Applications Coverability

Three Pre sets

m Pres,(0) = {x € N: TM; does not halt in < x steps },
m Pres, (1) = {x € N: TM; halts in < x steps },
m Pres,(x) =0 for x > 2.

Conclusion: prebasis is not computable for F;

m Therefore, 1 Pres,(11) = 1 Pres;(1) = Preg,(1).
m If an algorithm outputting a finite basis of 1 Pregs, (1 1)
then it would be possible to decide whether Preg,(1) =

existed,
0.

19 /24

Termination
Applications Coverability

Three Pre sets

m Pres,(0) = {x € N: TM; does not halt in < x steps },
m Pres, (1) = {x € N: TM; halts in < x steps },
m Pres,(x) =0 for x > 2.

Conclusion: prebasis is not computable for F;

m Therefore, 1 Pres,(11) = 1 Pres;(1) = Preg,(1).
m If an algorithm outputting a finite basis of 1 Pregs, (1 1)
then it would be possible to decide whether Preg,(1) =

m But Preg,(1) = 0 iff TM; does not halt.

m The halting problem thus Turing-reduces to the prebasis
computation.

existed,
0.

19 /24

Termination
Applications Coverability

Boundedness for infinitely branching WSTS

Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

20 /24

Termination
Applications Coverability

Boundedness for infinitely branching WSTS

Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

m We build a reachability tree T with root ¢y labelled xg.

m If Posts(xp) is infinite, then we return “unbounded”,
otherwise we mark cg and for every x € Posts(xp) we add a
child labelled x to ¢p.

20 /24

Termination
Applications Coverability

Boundedness for infinitely branching WSTS

Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

m We build a reachability tree T with root ¢y labelled xg.

m If Posts(xp) is infinite, then we return “unbounded”,
otherwise we mark cg and for every x € Posts(xp) we add a
child labelled x to ¢p.

m If ¢ has an ancestor ¢’ labelled x’ such that x’ < x, we return
“unbounded”. Otherwise,

m if ¢ has an ancestor ¢’ labelled x’ such that x’ = x, we mark c.
m Otherwise, if Posts(x) is infinite, then we return “unbounded”.
Otherwise we mark ¢ and for every y € Posts(x) we add a

child labelled y to c.

20 /24

Termination
Applications Coverability

Boundedness for infinitely branching WSTS

Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

m We build a reachability tree T with root ¢y labelled xg.

m If Posts(xp) is infinite, then we return “unbounded”,
otherwise we mark cg and for every x € Posts(xp) we add a
child labelled x to ¢p.

m If ¢ has an ancestor ¢’ labelled x’ such that x’ < x, we return
“unbounded”. Otherwise,

m if ¢ has an ancestor ¢’ labelled x’ such that x’ = x, we mark c.
m Otherwise, if Posts(x) is infinite, then we return “unbounded”.
Otherwise we mark ¢ and for every y € Posts(x) we add a

child labelled y to c.

m 7 is finite and correct.
20 /24

Conclusion

Further result for infinitely branching WSTS

Strong maintainability is decidable for WSTS with strong
monotony and such that S is a post-effective WSTS.

21 /24

Conclusion

m general class of infinitely branching WSTS with a
Karp-Miller procedure?

Conclusion

m general class of infinitely branching WSTS with a
Karp-Miller procedure?

m Toward the algorithmics of complete WSTS.

Conclusion

m general class of infinitely branching WSTS with a
Karp-Miller procedure?

m Toward the algorithmics of complete WSTS.

m What else can we do with the WSTS completion?

Conclusion

Thank you!

23 /24

	Introduction
	Overview
	WSTS
	Reachability problems

	WSTS completion
	Ideals
	Completion

	Applications
	Termination
	Coverability

