
Introduction
WSTS completion

Applications
Conclusion

Handling Infinitely Branching WSTS

Michael Blondin 1 2, Alain Finkel1 & Pierre McKenzie 1 2

1LSV, ENS Cachan

2DIRO, Université de Montréal

PV 2015, Madrid, September 4, 2015

1 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

Example of WSTS: Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

Example of WSTS: Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition systems (WSTS) encompass a large
number of infinite state systems.

Example of WSTS: Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Multiple decidability results are known for finitely branching
WSTS.

Example of WSTS: Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() =

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

How to handle infinitely branching WSTS such as systems with
infinitely many initial states, and parametric systems?

Example of WSTS: ω–Petri nets (Geeraerts, Heußner, Praveen & Raskin PN’13)

ω

Post() = , , , . . .

2 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

N3,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆N3 × N3,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

>

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

>

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

>

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ ∗−→ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
transitive monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ +−→ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
strong monotony,
well-quasi-ordered.

:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ −→ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Well-structured transition system (Finkel ICALP’87, Finkel & Schnoebelen TCS’01)

S = (X ,−→,≤) where

X set,
−→ ⊆X × X ,
monotony,
well-quasi-ordered:
∀x0, x1, . . . ∃i < j s.t. xi ≤ xj .

∀ x −→ y

> >

x ′ y ′ ∃

3 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some finitely branching WSTS

Petri nets, vector addition systems,
Counter machines with affine updates,
Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS’96),
Much more.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some finitely branching WSTS

Petri nets, vector addition systems,

Counter machines with affine updates,
Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS’96),
Much more.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some finitely branching WSTS

Petri nets, vector addition systems,
Counter machines with affine updates,

Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS’96),
Much more.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some finitely branching WSTS

Petri nets, vector addition systems,
Counter machines with affine updates,
Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS’96),

Much more.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some finitely branching WSTS

Petri nets, vector addition systems,
Counter machines with affine updates,
Lossy channel systems (Abdulla, Cerans, Jonsson & Tsay LICS’96),
Much more.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer IC’96),

Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC’12),
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN’13),
Parametric WSTS.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer IC’96),
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC’12),

ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN’13),
Parametric WSTS.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer IC’96),
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC’12),
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN’13),

Parametric WSTS.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Branching
A WSTS (X ,−→,≤) is finitely branching if Post(x) is finite for
every x ∈ X .

Some infinitely branching WSTS

Inserting FIFO automata (Cécé, Finkel, Iyer IC’96),
Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC’12),
ω-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN’13),
Parametric WSTS.

4 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Proposition
Finite branching is undecidable for post-effective WSTS.

Proof

Let Si = (N,−→Si ,≤) be the WSTS such that:
x −→Si x + 1 if TMi does not halt within ≤ x steps,
x −→Si 0, 1, 2, . . . otherwise.

Si is post-effective (the cardinal of PostSi (x) is computable).
Si has strong and strict monotony since x −→Si x + 1 for every
x ∈ N.
TMi halts iff there exist x ∈ N and an execution 0 ∗−→Si x such
that PostSi (x) is infinite.
The halting problem thus Turing-reduces to the infinite
branching problem.

5 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Proposition
Finite branching is undecidable for post-effective WSTS.

Proof

Let Si = (N,−→Si ,≤) be the WSTS such that:
x −→Si x + 1 if TMi does not halt within ≤ x steps,
x −→Si 0, 1, 2, . . . otherwise.

Si is post-effective (the cardinal of PostSi (x) is computable).
Si has strong and strict monotony since x −→Si x + 1 for every
x ∈ N.
TMi halts iff there exist x ∈ N and an execution 0 ∗−→Si x such
that PostSi (x) is infinite.
The halting problem thus Turing-reduces to the infinite
branching problem.

5 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Proposition
Finite branching is undecidable for post-effective WSTS.

Proof

Let Si = (N,−→Si ,≤) be the WSTS such that:
x −→Si x + 1 if TMi does not halt within ≤ x steps,
x −→Si 0, 1, 2, . . . otherwise.

Si is post-effective (the cardinal of PostSi (x) is computable).
Si has strong and strict monotony since x −→Si x + 1 for every
x ∈ N.

TMi halts iff there exist x ∈ N and an execution 0 ∗−→Si x such
that PostSi (x) is infinite.
The halting problem thus Turing-reduces to the infinite
branching problem.

5 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Proposition
Finite branching is undecidable for post-effective WSTS.

Proof

Let Si = (N,−→Si ,≤) be the WSTS such that:
x −→Si x + 1 if TMi does not halt within ≤ x steps,
x −→Si 0, 1, 2, . . . otherwise.

Si is post-effective (the cardinal of PostSi (x) is computable).
Si has strong and strict monotony since x −→Si x + 1 for every
x ∈ N.
TMi halts iff there exist x ∈ N and an execution 0 ∗−→Si x such
that PostSi (x) is infinite.
The halting problem thus Turing-reduces to the infinite
branching problem.

5 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Objective
We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

Termination,
Coverability,
Boundedness.

6 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Objective
We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

Termination,

Coverability,
Boundedness.

6 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Objective
We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

Termination,
Coverability,

Boundedness.

6 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Objective
We want to study the usual reachability problems for these
infinitely branching systems, e.g.,

Termination,
Coverability,
Boundedness.

6 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Finkel ICALP’87)

Termination is decidable for finitely branching WSTS with
transitive monotony.

7 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (Finkel ICALP’87)

Termination is decidable for finitely branching WSTS with
transitive monotony.

7 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃x0 −→ x1 −→ x2 −→ . . .?

Theorem (deduced from Dufourd, Jančar & Schnoebelen ICALP’99)

Termination is undecidable for infinitely branching WSTS.

7 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Strong termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions from x0?

Remark
Strong termination and termination are the same in finitely
branching WSTS.

8 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Strong termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions from x0?

Remark
Strong termination and termination are the same in finitely
branching WSTS.

8 / 24

Introduction
WSTS completion

Applications
Conclusion

Overview
WSTS
Reachability problems

Strong termination
Input: (X ,−→,≤) a WSTS, x0 ∈ X .
Question: ∃k bounding length of executions from x0?

Theorem
Strong termination is decidable for infinitely branching WSTS
under some assumptions.

8 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Issues with finite branching techniques
Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool
Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq in STACS’09 and ICALP’09.

9 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Issues with finite branching techniques
Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool
Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq in STACS’09 and ICALP’09.

9 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Ideals
I ⊆ X is an ideal if

downward closed: I = ↓ I,

directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.

10 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Ideals
I ⊆ X is an ideal if

downward closed: I = ↓ I,
directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.

10 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Ideals
I ⊆ X is an ideal if

downward closed: I = ↓ I,
directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.

10 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Ideals
I ⊆ X is an ideal if

downward closed: I = ↓ I,
directed: a, b ∈ I =⇒ ∃c ∈ I s.t. a ≤ c and b ≤ c.

10 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem (Finkel & Goubault-Larrecq ICALP’09; Goubault-Larrecq ’14)

D downward closed =⇒ D =
⋃
finite

Ideals

Corollary
Every downward closed set decomposes canonically as the union of
its maximal ideals.

11 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem (Finkel & Goubault-Larrecq ICALP’09; Goubault-Larrecq ’14)

D downward closed =⇒ D =
⋃
finite

Ideals

Corollary
Every downward closed set decomposes canonically as the union of
its maximal ideals.

11 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Completion
The completion of S = (X ,−→S ,≤) is Ŝ = (X̂ ,−→Ŝ ,⊆) such that

X̂ = Ideals(X),
I −→Ŝ J if ↓Post(I) = . . . ∪ J ∪ . . .︸ ︷︷ ︸

canonical decomposition

12 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Completion
The completion of S = (X ,−→S ,≤) is Ŝ = (X̂ ,−→Ŝ ,⊆) such that

X̂ = Ideals(X),

I −→Ŝ J if ↓Post(I) = . . . ∪ J ∪ . . .︸ ︷︷ ︸
canonical decomposition

12 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Completion
The completion of S = (X ,−→S ,≤) is Ŝ = (X̂ ,−→Ŝ ,⊆) such that

X̂ = Ideals(X),
I −→Ŝ J if ↓Post(I) = . . . ∪ J ∪ . . .︸ ︷︷ ︸

canonical decomposition

12 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem
Let S = (X ,−→S ,≤) be a WSTS, then Ŝ = (X̂ ,−→Ŝ ,⊆) is such
that:

Ŝ is finitely branching,

Ŝ has (strong) monotony,
Ŝ is not always a WSTS (Jančar IPL’99).

Jančar IPL’99
A wqo ≤ is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare
ordering defined by A ≤# B iff ↑ B ⊆↑ A.

Theorem
Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

13 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem
Let S = (X ,−→S ,≤) be a WSTS, then Ŝ = (X̂ ,−→Ŝ ,⊆) is such
that:

Ŝ is finitely branching,
Ŝ has (strong) monotony,

Ŝ is not always a WSTS (Jančar IPL’99).

Jančar IPL’99
A wqo ≤ is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare
ordering defined by A ≤# B iff ↑ B ⊆↑ A.

Theorem
Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

13 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem
Let S = (X ,−→S ,≤) be a WSTS, then Ŝ = (X̂ ,−→Ŝ ,⊆) is such
that:

Ŝ is finitely branching,
Ŝ has (strong) monotony,
Ŝ is not always a WSTS (Jančar IPL’99).

Jančar IPL’99
A wqo ≤ is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare
ordering defined by A ≤# B iff ↑ B ⊆↑ A.

Theorem
Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

13 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem
Let S = (X ,−→S ,≤) be a WSTS, then Ŝ = (X̂ ,−→Ŝ ,⊆) is such
that:

Ŝ is finitely branching,
Ŝ has (strong) monotony,
Ŝ is not always a WSTS (Jančar IPL’99).

Jančar IPL’99
A wqo ≤ is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare
ordering defined by A ≤# B iff ↑ B ⊆↑ A.

Theorem
Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

13 / 24

Introduction
WSTS completion

Applications
Conclusion

Ideals
Completion

Theorem
Let S = (X ,−→S ,≤) be a WSTS, then Ŝ = (X̂ ,−→Ŝ ,⊆) is such
that:

Ŝ is finitely branching,
Ŝ has (strong) monotony,
Ŝ is not always a WSTS (Jančar IPL’99).

Jančar IPL’99
A wqo ≤ is a ω2-wqo iff ≤# is a wqo, where ≤# is the Hoare
ordering defined by A ≤# B iff ↑ B ⊆↑ A.

Theorem
Let S be a WSTS, then Ŝ is a WSTS iff S is a ω2-WSTS.

13 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y ,

then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x

there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y

such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J ,

then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J

there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I

such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ∗−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS with transitive monotony, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x ≥k−−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relating executions of S and Ŝ
Let S = (X ,−→S ,≤) be a WSTS with strong monotony, then

if x k−→S y , then for every ideal I ⊇ ↓ x there exists an ideal
J ⊇ ↓ y such that I k−→Ŝ J ,

if I k−→Ŝ J , then for every y ∈ J there exists x ∈ I such that
x k−→S y ′ ≥ y .

14 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Relations between S and Ŝ

A generality
The completion Ŝ = (X̂ ,−→Ŝ ,⊆) computes exactly the downward
closure of the reachability set of its original system
S = (X ,−→S ,≤).

An equality
We have: Post∗

Ŝ
(↓ x)= ↓Post∗S(x).

In fact, it is more exactly:

Theorem
If Post∗

Ŝ
(↓ x) = {J1, . . . , Jn} then ↓Post∗S(x) = J1 ∪ . . . ∪ Jn.

15 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem
Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Post-effectiveness
Possible to compute cardinality of

Post() = , , , . . .

16 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem
Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Post-effectiveness
Possible to compute cardinality of

Post() = , , , . . .

16 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem
Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in Ŝ.

Ŝ finitely branching, can decide termination in Ŝ by Finkel
ICALP’87, Finkel & Schnoebelen TCS’01.

16 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Theorem
Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that Ŝ is a post-effective WSTS.

Proof

Executions bounded in S iff bounded in Ŝ.
Ŝ finitely branching, can decide termination in Ŝ by Finkel
ICALP’87, Finkel & Schnoebelen TCS’01.

16 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0

∗−→ x ′ ≥ x?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0 ∈ ↑Pre∗(↑ x)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if x 6∈ D.

Backward method (Abdulla, Cerans, Jonsson & Tsay IC’00)

Compute ↑Pre∗(↑ x) iteratively assuming ↑Pre(↑ x) computable.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x0 ∈ ↑Pre∗(↑ x)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if x 6∈ D.

Backward method (Abdulla, Cerans, Jonsson & Tsay IC’00)

Compute ↑Pre∗(↑ x) iteratively assuming ↑Pre(↑ x) computable.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.

Non coverability:
Enumerate

,

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D
Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D = I1 ∪ . . . ∪ Ik

, x0 ∈ D and
↓PostS(D) ⊆ D

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed

, x0 ∈ D

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, ↓ x0 ⊆ I1 ∪ . . . ∪ Ik

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, ∃j s.t. ↓ x0 ⊆ Ij

Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Coverability
Input: (X ,−→,≤) a WSTS, x0, x ∈ X .
Question: x ∈ ↓Post∗(x0)?

Forward method
Coverability:

Enumerate executions ↓ x0
∗−→Ŝ I,

Accept if x ∈ I.
Non coverability:

Enumerate D ⊆ X downward closed, x0 ∈ D and
↓PostS(D) ⊆ D
Reject if x 6∈ D.

17 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Prebasis computability
Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F1
The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y ≥ x .

Prebasis is not computable for F1
Let Si = (N,−→Si ,≤) be the WSTS such that:

x −→Si 0 if TMi does not halt on its encoding in ≤ x steps,
x −→Si 1 otherwise.

Then Si ∈ F1 and Si is effective.

18 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Prebasis computability
Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F1
The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y ≥ x .

Prebasis is not computable for F1
Let Si = (N,−→Si ,≤) be the WSTS such that:

x −→Si 0 if TMi does not halt on its encoding in ≤ x steps,
x −→Si 1 otherwise.

Then Si ∈ F1 and Si is effective.

18 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Prebasis computability
Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F1
The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y ≥ x .

Prebasis is not computable for F1
Let Si = (N,−→Si ,≤) be the WSTS such that:

x −→Si 0 if TMi does not halt on its encoding in ≤ x steps,
x −→Si 1 otherwise.

Then Si ∈ F1 and Si is effective.

18 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Prebasis computability
Prebasis computability is sufficient, but not necessary, to ensure
decidability of coverability.

Coverability is decidable in F1
The algorithm consists to enumerate strictly increasing reachable
sequences until finding an y ≥ x .

Prebasis is not computable for F1
Let Si = (N,−→Si ,≤) be the WSTS such that:

x −→Si 0 if TMi does not halt on its encoding in ≤ x steps,
x −→Si 1 otherwise.

Then Si ∈ F1 and Si is effective.

18 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Three Pre sets

PreSi (0) = {x ∈ N : TMi does not halt in ≤ x steps },
PreSi (1) = {x ∈ N : TMi halts in ≤ x steps },
PreSi (x) = ∅ for x ≥ 2.

Conclusion: prebasis is not computable for F1

Therefore, ↑PreSi (↑ 1) = ↑PreSi (1) = PreSi (1).
If an algorithm outputting a finite basis of ↑PreSi (↑ 1) existed,
then it would be possible to decide whether PreSi (1) = ∅.
But PreSi (1) = ∅ iff TMi does not halt.
The halting problem thus Turing-reduces to the prebasis
computation.

19 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Three Pre sets

PreSi (0) = {x ∈ N : TMi does not halt in ≤ x steps },
PreSi (1) = {x ∈ N : TMi halts in ≤ x steps },
PreSi (x) = ∅ for x ≥ 2.

Conclusion: prebasis is not computable for F1

Therefore, ↑PreSi (↑ 1) = ↑PreSi (1) = PreSi (1).
If an algorithm outputting a finite basis of ↑PreSi (↑ 1) existed,
then it would be possible to decide whether PreSi (1) = ∅.

But PreSi (1) = ∅ iff TMi does not halt.
The halting problem thus Turing-reduces to the prebasis
computation.

19 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Three Pre sets

PreSi (0) = {x ∈ N : TMi does not halt in ≤ x steps },
PreSi (1) = {x ∈ N : TMi halts in ≤ x steps },
PreSi (x) = ∅ for x ≥ 2.

Conclusion: prebasis is not computable for F1

Therefore, ↑PreSi (↑ 1) = ↑PreSi (1) = PreSi (1).
If an algorithm outputting a finite basis of ↑PreSi (↑ 1) existed,
then it would be possible to decide whether PreSi (1) = ∅.
But PreSi (1) = ∅ iff TMi does not halt.
The halting problem thus Turing-reduces to the prebasis
computation.

19 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Boundedness for infinitely branching WSTS
Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

We build a reachability tree T with root c0 labelled x0.
If PostS(x0) is infinite, then we return “unbounded”,
otherwise we mark c0 and for every x ∈ PostS(x0) we add a
child labelled x to c0.
If c has an ancestor c ′ labelled x ′ such that x ′ < x , we return
“unbounded”. Otherwise,

if c has an ancestor c ′ labelled x ′ such that x ′ = x , we mark c.
Otherwise, if PostS(x) is infinite, then we return “unbounded”.
Otherwise we mark c and for every y ∈ PostS(x) we add a
child labelled y to c.

T is finite and correct.

20 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Boundedness for infinitely branching WSTS
Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

We build a reachability tree T with root c0 labelled x0.
If PostS(x0) is infinite, then we return “unbounded”,
otherwise we mark c0 and for every x ∈ PostS(x0) we add a
child labelled x to c0.

If c has an ancestor c ′ labelled x ′ such that x ′ < x , we return
“unbounded”. Otherwise,

if c has an ancestor c ′ labelled x ′ such that x ′ = x , we mark c.
Otherwise, if PostS(x) is infinite, then we return “unbounded”.
Otherwise we mark c and for every y ∈ PostS(x) we add a
child labelled y to c.

T is finite and correct.

20 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Boundedness for infinitely branching WSTS
Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

We build a reachability tree T with root c0 labelled x0.
If PostS(x0) is infinite, then we return “unbounded”,
otherwise we mark c0 and for every x ∈ PostS(x0) we add a
child labelled x to c0.
If c has an ancestor c ′ labelled x ′ such that x ′ < x , we return
“unbounded”. Otherwise,

if c has an ancestor c ′ labelled x ′ such that x ′ = x , we mark c.
Otherwise, if PostS(x) is infinite, then we return “unbounded”.
Otherwise we mark c and for every y ∈ PostS(x) we add a
child labelled y to c.

T is finite and correct.

20 / 24

Introduction
WSTS completion

Applications
Conclusion

Termination
Coverability

Boundedness for infinitely branching WSTS
Boundedness is decidable for post-effective WSTS with strict
monotony and a wpo.

Proof

We build a reachability tree T with root c0 labelled x0.
If PostS(x0) is infinite, then we return “unbounded”,
otherwise we mark c0 and for every x ∈ PostS(x0) we add a
child labelled x to c0.
If c has an ancestor c ′ labelled x ′ such that x ′ < x , we return
“unbounded”. Otherwise,

if c has an ancestor c ′ labelled x ′ such that x ′ = x , we mark c.
Otherwise, if PostS(x) is infinite, then we return “unbounded”.
Otherwise we mark c and for every y ∈ PostS(x) we add a
child labelled y to c.

T is finite and correct.
20 / 24

Introduction
WSTS completion

Applications
Conclusion

Further result for infinitely branching WSTS
Strong maintainability is decidable for WSTS with strong
monotony and such that Ŝ is a post-effective WSTS.

21 / 24

Introduction
WSTS completion

Applications
Conclusion

Further work

∃ general class of infinitely branching WSTS with a
Karp-Miller procedure?

Toward the algorithmics of complete WSTS.
What else can we do with the WSTS completion?

22 / 24

Introduction
WSTS completion

Applications
Conclusion

Further work

∃ general class of infinitely branching WSTS with a
Karp-Miller procedure?
Toward the algorithmics of complete WSTS.

What else can we do with the WSTS completion?

22 / 24

Introduction
WSTS completion

Applications
Conclusion

Further work

∃ general class of infinitely branching WSTS with a
Karp-Miller procedure?
Toward the algorithmics of complete WSTS.
What else can we do with the WSTS completion?

22 / 24

Introduction
WSTS completion

Applications
Conclusion

Thank you!

23 / 24

	Introduction
	Overview
	WSTS
	Reachability problems

	WSTS completion
	Ideals
	Completion

	Applications
	Termination
	Coverability

