

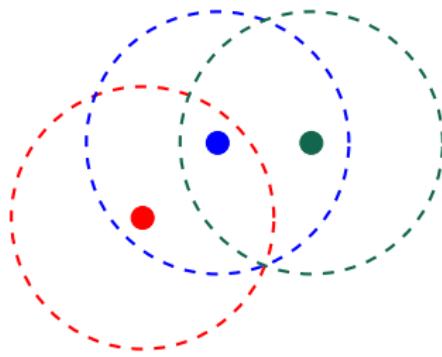
Adding Probabilities to Networks with Selective Broadcast

Arnaud Sangnier

Joint Work with:
Nathalie Bertrand and Paulin Fournier

Parameterized Verification - 5th september 2015

Ad Hoc Networks



Main characteristics of Ad Hoc Networks

- Nodes can be mobile
- Topology is not known a priori
- Messages are broadcasted to the neighbours
- Problems linked to communication (collision, loss of messages, etc.)

Parameterized model for ad hoc network

**Networks with a parametric number of processes
executing the same 'program'**

A bit of history:

- Parametric model with broadcast [CONCUR'10]
- Qualitative reachability problem [CONCUR'10,FOSSACS'10]
- Model with faulty behavior [FORTE'12]
- Analysis quantitative reachability queries [FSTTCS'12]
- Adding identifiers and data to the model [RP'13]
- **Introducing local probabilistic choices in the model** [FOSSACS'14]

In this talk

Characteristics of the model

- Each node executes a finite state process
- Communication through broadcast of messages
- Messages sent to neighbors
- Neighbors can change non deterministically at any moment
- Number of entities not fixed a priori (**parameter**)
- Internal probabilistic choice for changing state

Verification problem

- Probabilistic version of control state reachability
 - Qualitative question (probability 0 or 1)
 - Minimize or maximize the probability

Difficulties:

Infinite state system + non-determinism + probabilities

Outline

- ➊ Probabilistic Reconfigurable Broadcast Network (PRBN)
- ➋ Parity Reconfigurable Broadcast Networks (Parity RBN)
- ➌ Playing with probabilities in PRBN
- ➍ Conclusion and future works

Outline

- ➊ Probabilistic Reconfigurable Broadcast Network (PRBN)
- ➋ Parity Reconfigurable Broadcast Networks (Parity RBN)
- ➌ Playing with probabilities in PRBN
- ➍ Conclusion and future works

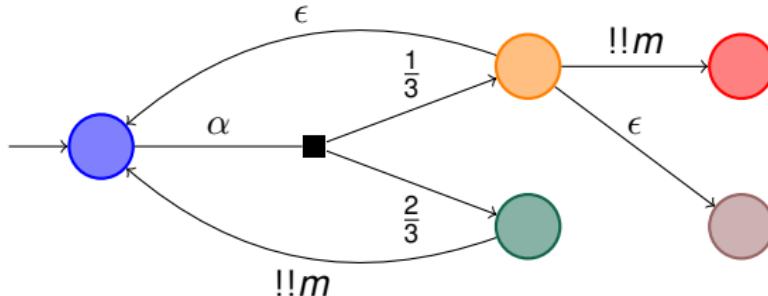
Model

A probabilistic process $P = \langle Q, \Sigma, R, q_0 \rangle$

Finite state system whose transitions are labeled with:

- ① broadcast of messages - $!!m$
- ② reception of messages - $??m$
- ③ internal action - ϵ
- ④ **Probabilistic actions** - α

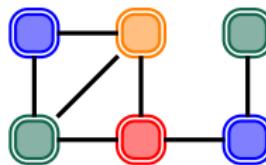
where m belongs to the finite alphabet Σ



PRBN: Configurations

A configuration is a graph $\gamma = \langle V, E, L \rangle$

- V : finite set of vertices
- $E : V \times V$: finite set of edges
- $L : V \rightarrow Q$: labeling function



- **Initial configurations:** all vertices are labeled with initial state

Remarks:

- The size of the considered graphs is not bounded
- Infinite number of configurations

⇒ PRBN are infinite state systems

PRBN: Semantics

Markov decision process $\mathcal{M}_P = \langle C, \Rightarrow, C_0 \rangle$ Induced by P

- C : (infinite) set of configurations
- $\Rightarrow: C \times C \cup C \times \text{Dist}(C)$: Transition relation
- C_0 : (infinite) set of initial configurations

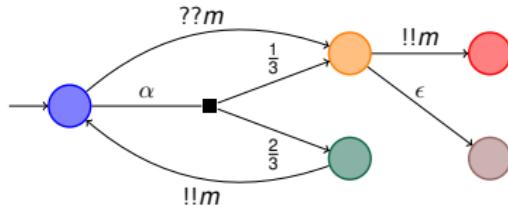
The transition relation is decomposed in three phases:

- ① Choose of a process
- ② Execution of an action
- ③ Choose of a new topology

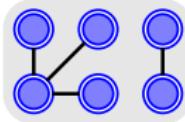
Properties

- The number of processes does not change
- At each step the topology can evolve non-deterministically

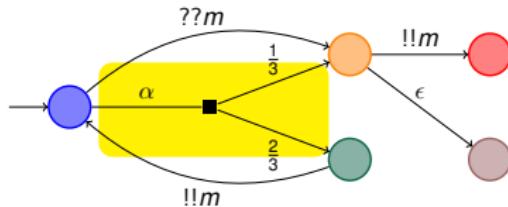
With fixed N and a Scheduler: Finite Markov chain



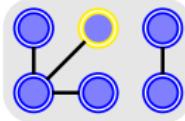
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



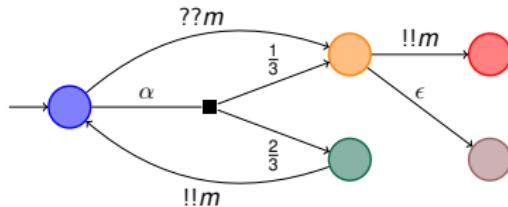
With fixed N and a Scheduler: Finite Markov chain



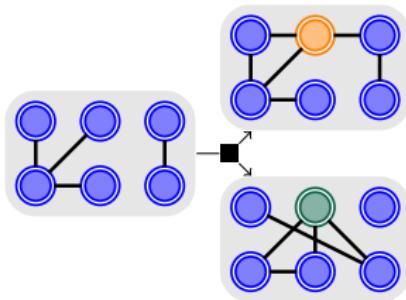
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



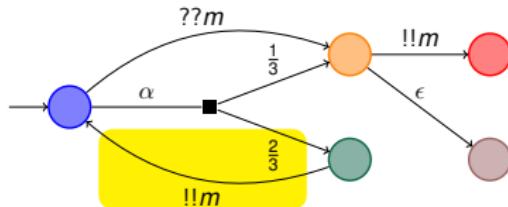
With fixed N and a Scheduler: Finite Markov chain



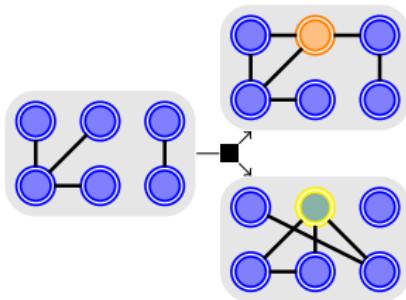
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



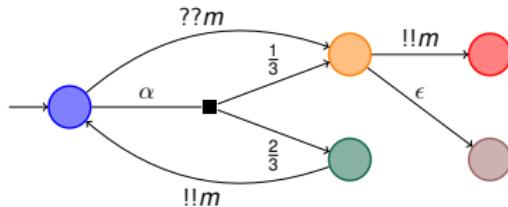
With fixed N and a Scheduler: Finite Markov chain



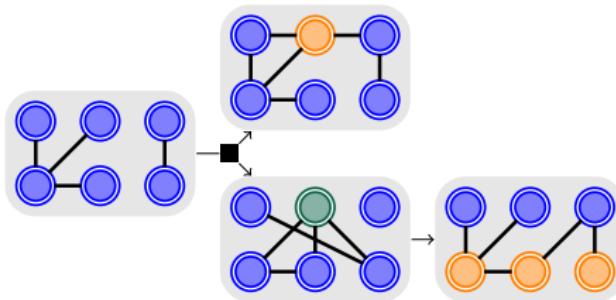
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



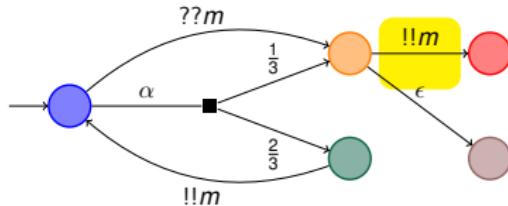
With fixed N and a Scheduler: Finite Markov chain



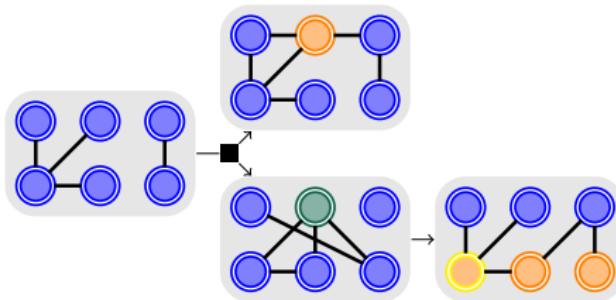
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



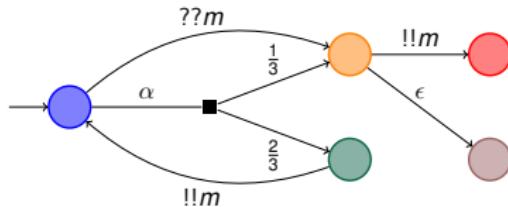
With fixed N and a Scheduler: Finite Markov chain



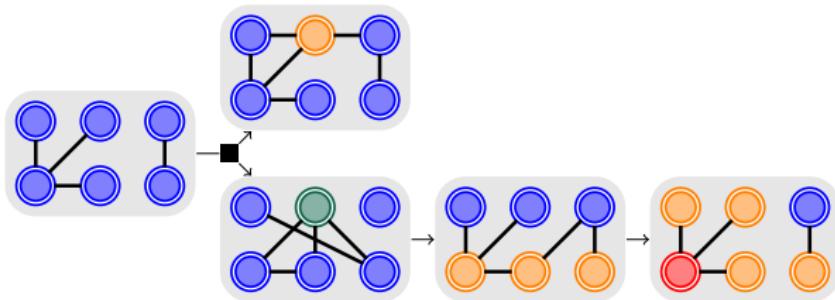
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



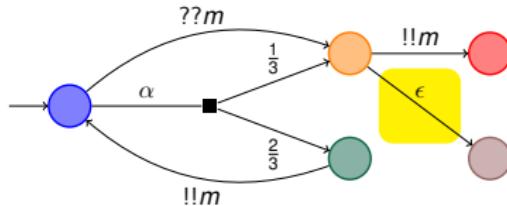
With fixed N and a Scheduler: Finite Markov chain



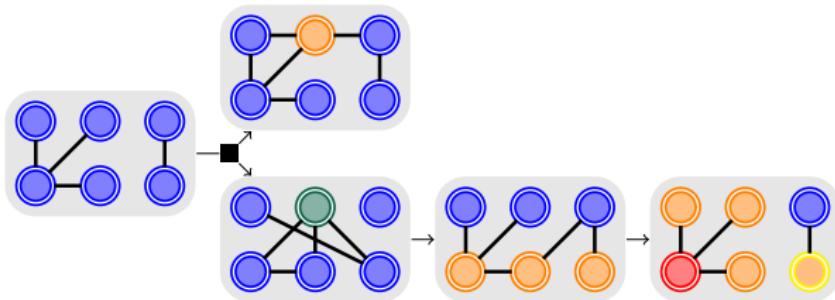
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



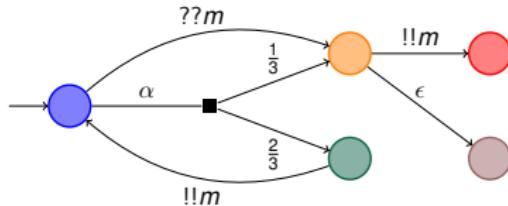
With fixed N and a Scheduler: Finite Markov chain



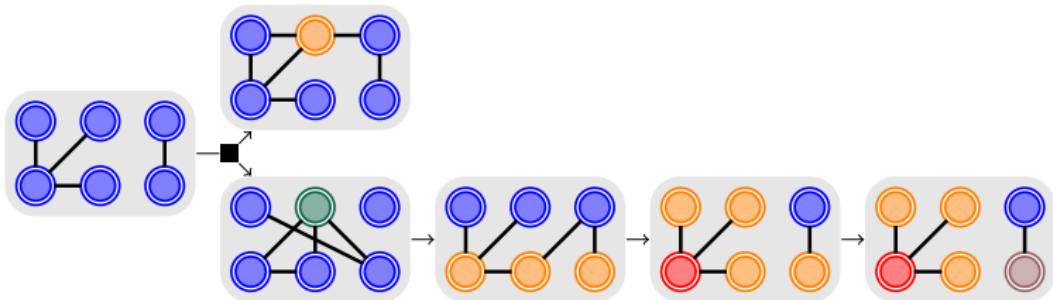
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



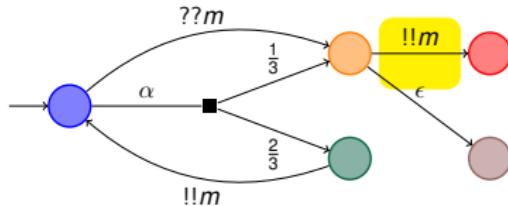
With fixed N and a Scheduler: Finite Markov chain



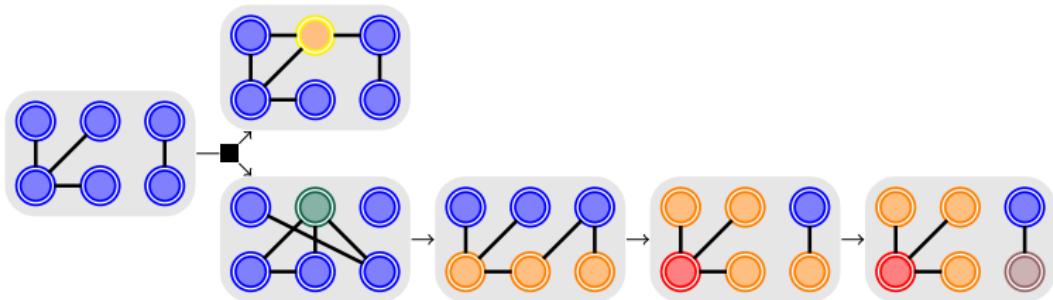
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



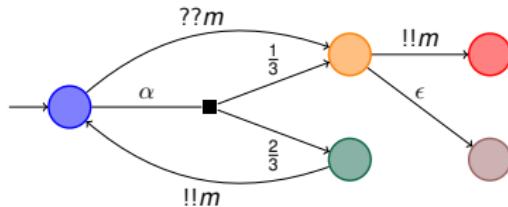
With fixed N and a Scheduler: Finite Markov chain



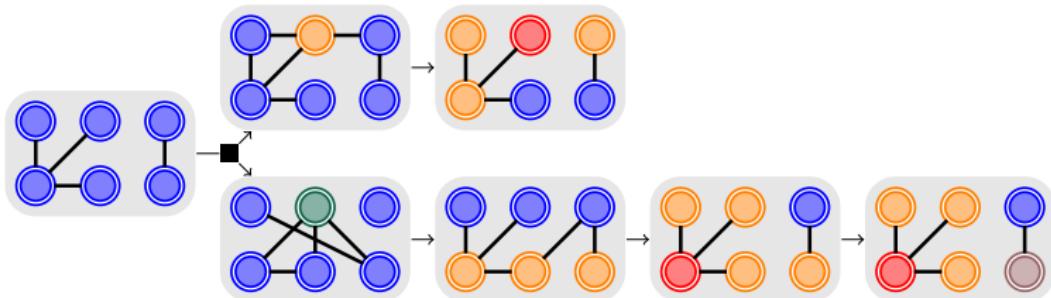
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



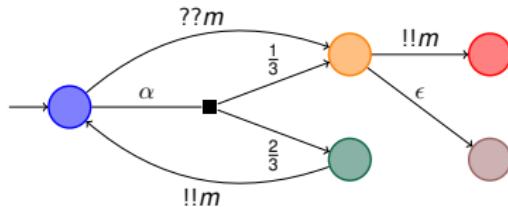
With fixed N and a Scheduler: Finite Markov chain



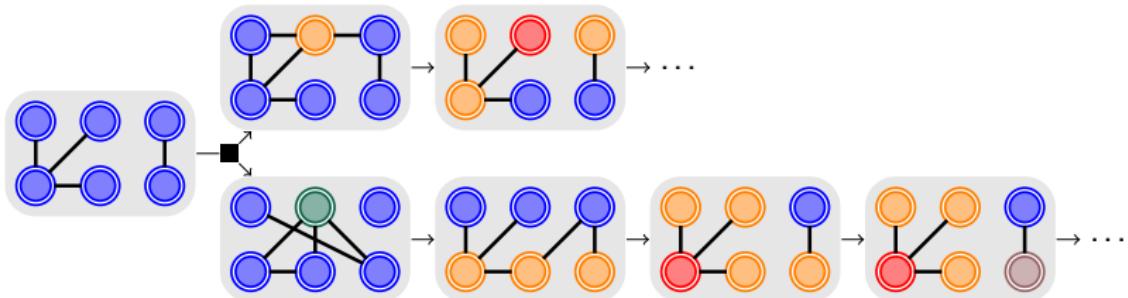
A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



With fixed N and a Scheduler: Finite Markov chain



A scheduler π resolve the non-determinism
It chooses the process, the action, and the new topology.



Studied Problems

$\text{REACH}_{opt}^{\sim b}$

$opt \in \{\min, \max\}, \sim \in \{>, <, \leq, \geq, =\}, b \in \{0, 1\}$

Input: A process and a control state $q_F \in Q$;

Output: Does there exist N such that:

$$\underset{\pi}{opt} \{ \mathbb{P}(\mathcal{M}_P, N, \pi, \diamond q_F) \} \sim b$$

$\Rightarrow N$ denotes here the number of initial process **Example of interesting questions:**

- Is a target state reachable almost surely, for some number of processes? $\text{REACH}_{\max}^{=1}$
- Is a target avoidable almost surely, for all numbers of processes and all decisions? $\text{REACH}_{\min}^{>0}$

Trivial cases

$\text{REACH}_{\max}^{=0}$

- Consider the case with a single node
- If we have $\max_{\pi} \{\mathbb{P}(\mathcal{M}_P, 1, \pi, \diamond q_F)\} > 0$
- Then for all $N > 1$, $\max_{\pi} \{\mathbb{P}(\mathcal{M}_P, 1, \pi, \diamond q_F)\} > 0$
- The reason being you can always execute a process on its own with no communication
- So we have $\text{REACH}_{\max}^{=0}$ iff $\max_{\pi} \{\mathbb{P}(\mathcal{M}_P, 1, \pi, \diamond q_F)\} = 0$

The same reasoning holds for $\text{REACH}_{\max}^{<1}$, $\text{REACH}_{\min}^{=1}$, $\text{REACH}_{\min}^{>0}$

Proposition

$\text{REACH}_{\max}^{=0}$, $\text{REACH}_{\max}^{<1}$, $\text{REACH}_{\min}^{=1}$ and $\text{REACH}_{\min}^{>0}$ are in PTIME.

This because with a single node, we have a finite state MDP and we use result on qualitative reachability in finite MDPs

Other cases

$\text{REACH}_{\max}^{>0}$

- Equivalent to parameterized control state reachability
- **Is in PTIME** [Delzanno et al., FSTTCS'12]
- It is even possible to compute the set of reachable states in polynomial time
- And to have an execution which reaches a configuration with a high number of nodes in each of these reachable states

What about $\text{REACH}_{\min}^{=0}$, $\text{REACH}_{\min}^{<1}$ and $\text{REACH}_{\max}^{=1}$?

- This problem are more difficult
- No previously known techniques can be applied
- Dealing with branching in infinite states systems with probability and non determinism is a difficult task

A word on Probabilities in Infinite State Systems

- RBN are **Well-Structured Transitions Systems**
 - *What you can do with small configurations can be achieved with bigger configurations*
- However the algorithms for reachability are not based on classical algorithms for WSTS
 - The model allows much more efficient algorithms
- There exists a general work on WSTS equipped with probabilities but **without non determinism**
 - Decisive Markov Chains [Abdulla et al. 2007]
- Some infinite state systems have been extended with probabilities and non-determinism
 - Non-deterministic and Probabilistic Lossy Channel System [Baier et al. 2007]
 - Recursive Markov Decision Process [Etessami et al. 2015]
- Adapting the used techniques seems difficult

A way to solve problems in finite state MDPs

- Solving qualitative reachability in finite MDP is easy
- It can be achieved in polynomial time
- One way to solve it although is to consider a μ -calculus formula
[Chatterjee et al. 2007]
- There is a strong connection between μ -calculus and parity game
- Qualitative reachability problem can be transformed into solving a parity game

This is the path we will follow

Main difficulties:

- ① Define a game with broadcast networks
- ② Find methods to solve this game

Outline

- 1 Probabilistic Reconfigurable Broadcast Network (PRBN)
- 2 Parity Reconfigurable Broadcast Networks (Parity RBN)
- 3 Playing with probabilities in PRBN
- 4 Conclusion and future works

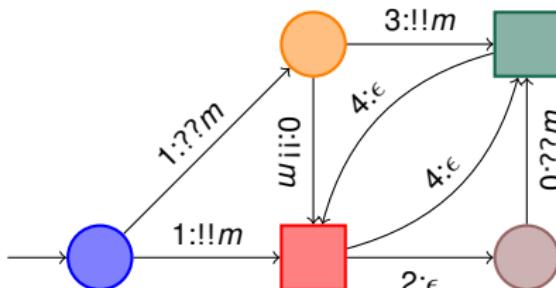
Parity Protocol

A protocol $P = \langle Q, Q_1, Q_2, \Sigma, R, q_0, \text{safe} \rangle$

- Q_1 states belonging to Player 1:
- Q_2 states belonging to Player 2:
- Transitions are labelled with:
 - 1 broadcast of messages: $!!m$ (resp.)
 - 2 reception of messages: $??m$
 - 3 internal action: ϵ

⇒ mandatory for transitions leaving player 2's states

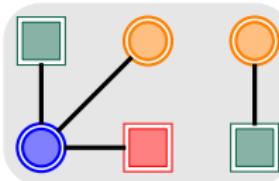
 - 4 parities, i.e. colors in \mathbb{N}
 - 5 $\text{safe} \subseteq R$ set of safe transitions



Parity RBN: Configurations

A configuration is a graph $\gamma = \langle V, E, L \rangle$

- V : finite set of vertices (also called processes)
- $E : V \times V$: finite set of edges (also called topology)
- $L : V \rightarrow Q_1 \cup Q_2$: labels (current state of processes)
- Plus a single active node



- **Initial configurations:** all vertices are labeled with initial state

Remarks:

- The size of the considered graphs is not bounded
- Infinite number of configurations

⇒ **Parity RBN are infinite state systems**

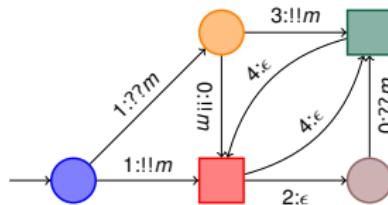
Characteristic of the induced game

- Each configuration is a vertex of the game
- The number of processes does not change
- Topology is controlled by Player 1 and can evolve at each step
- The number of configurations is unbounded
- Configurations of Player 2 are configurations where a node with label in Q_2 is active
- Colors are on the transitions (the colors of broadcast is considered)
- Safe transitions involved only safe actions

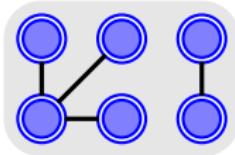
Strategies for Player 1 (σ) and Player 2 (τ) are asymmetric

- They are asymmetric
- Player 1 chooses the new topology and the active process v
- Player 1 or Player 2 chooses the action depending on $L(v) \in Q_1$ or $L(v) \in Q_2$

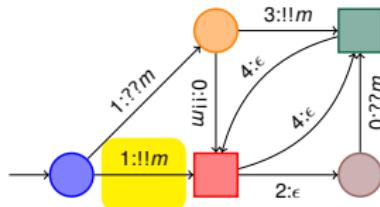
Example



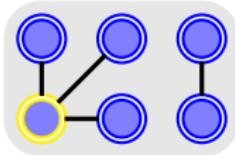
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



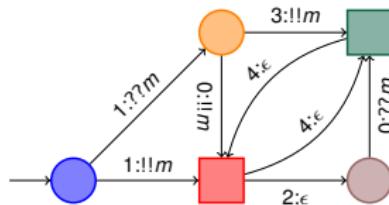
Example



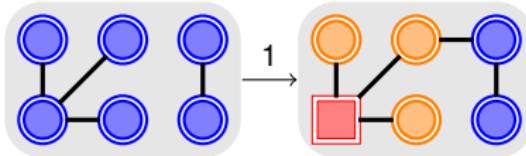
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



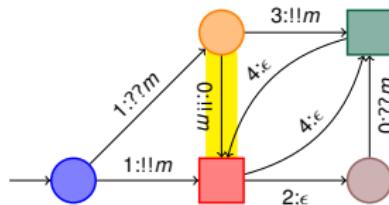
Example



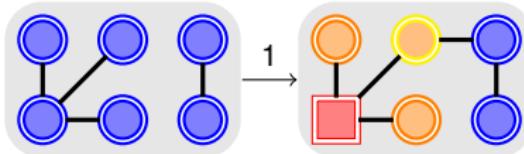
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



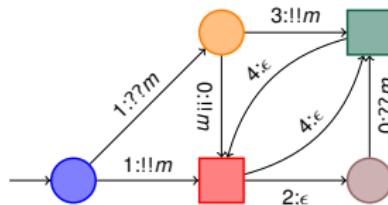
Example



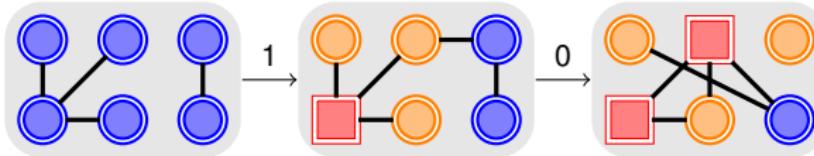
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



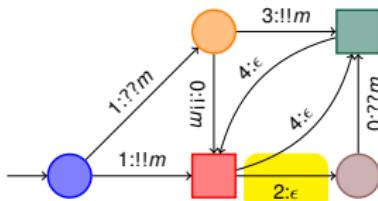
Example



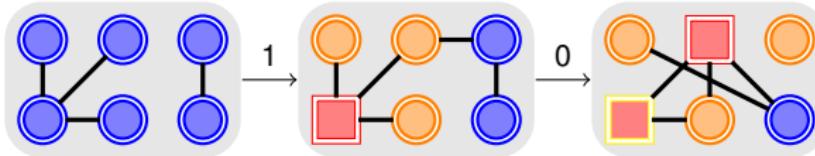
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



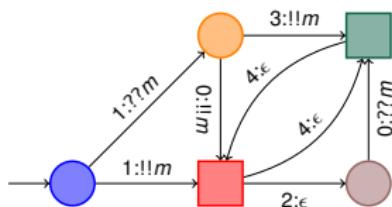
Example



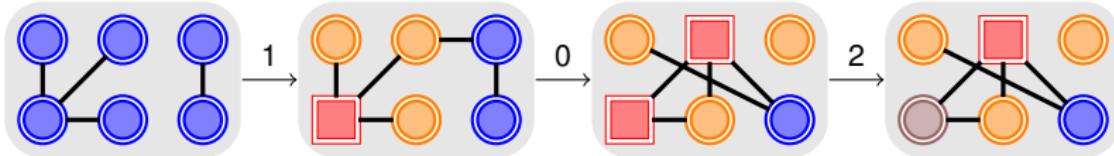
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



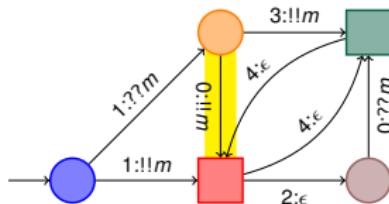
Example



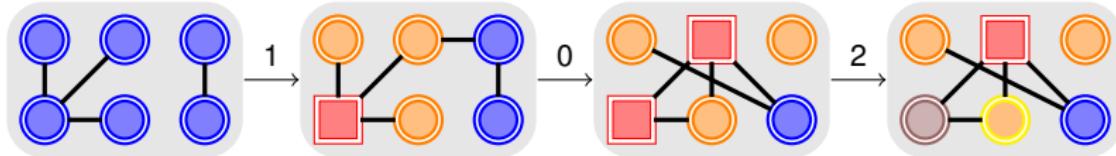
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



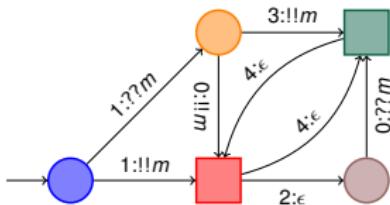
Example



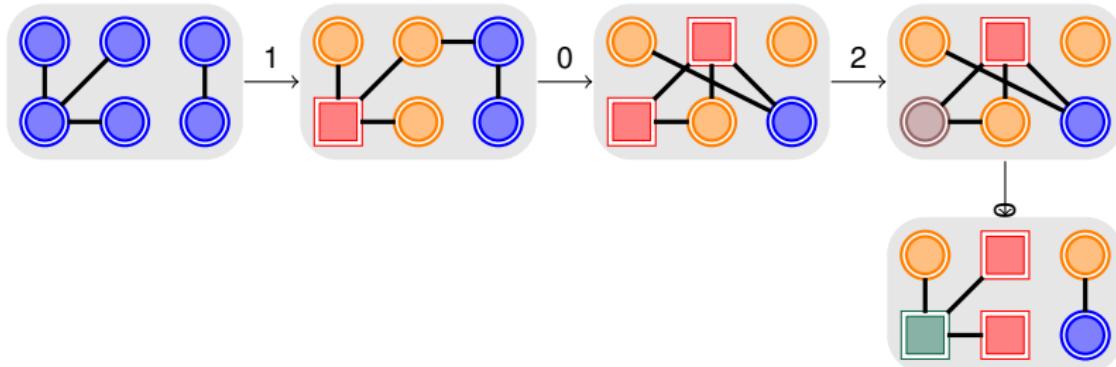
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



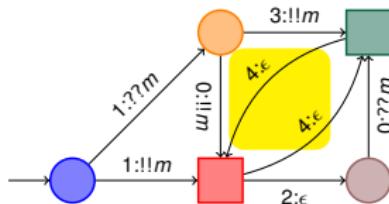
Example



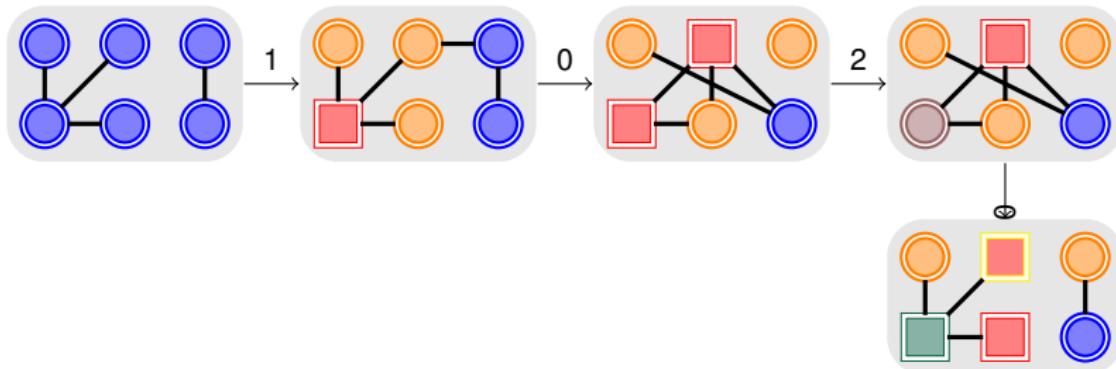
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



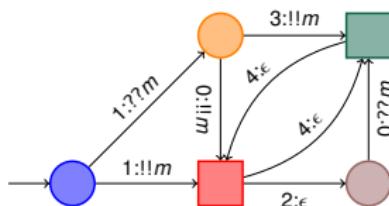
Example



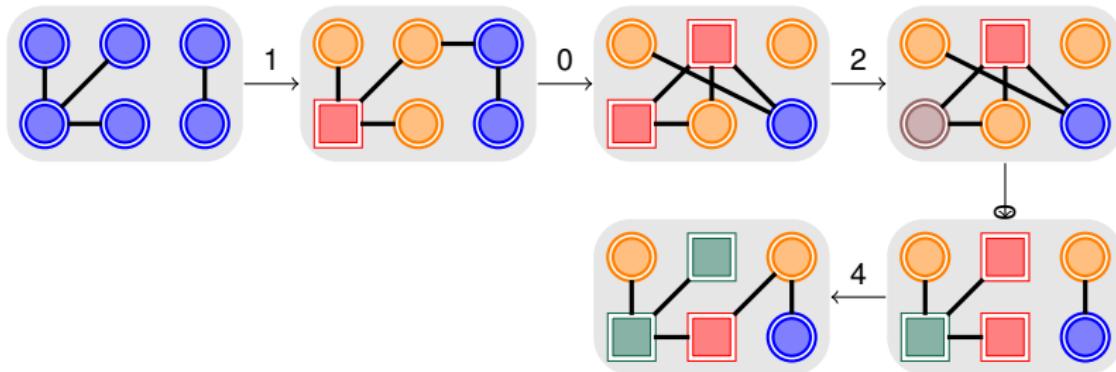
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



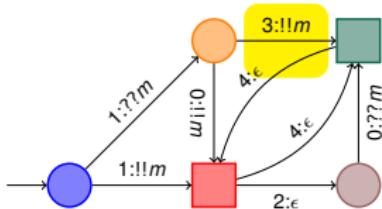
Example



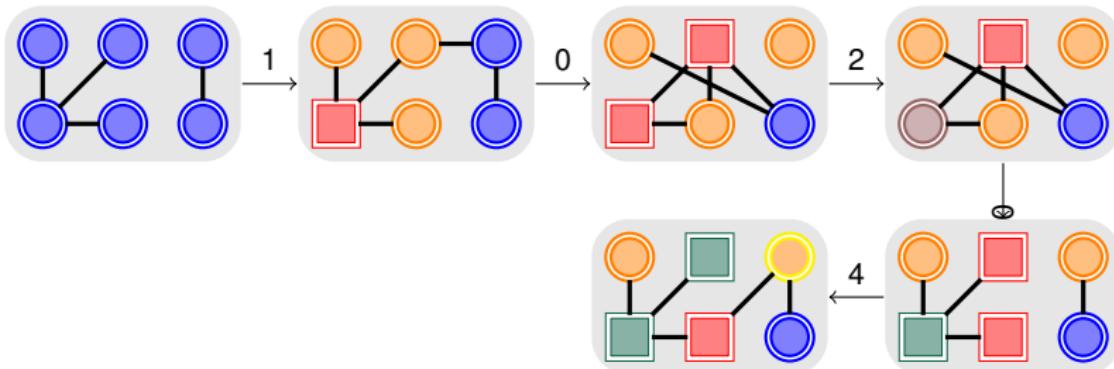
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



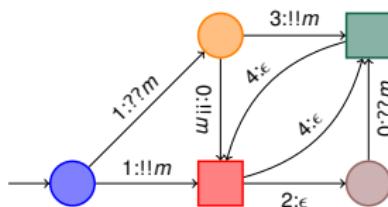
Example



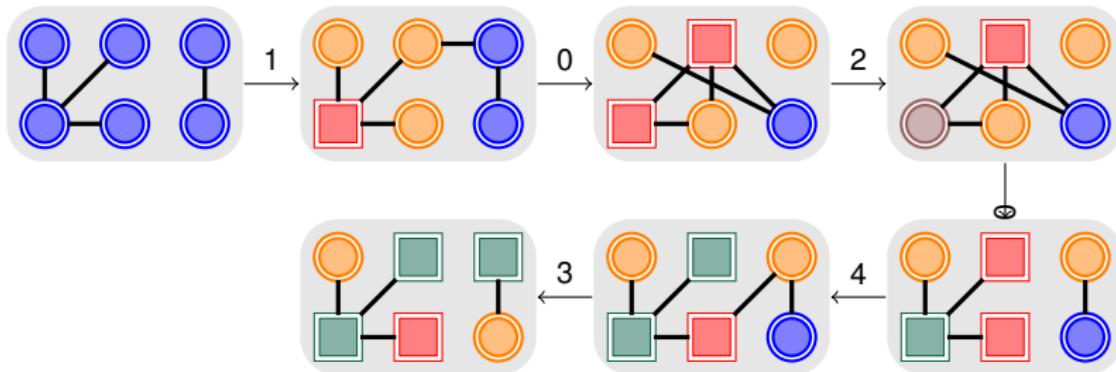
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



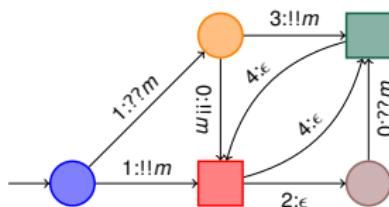
Example



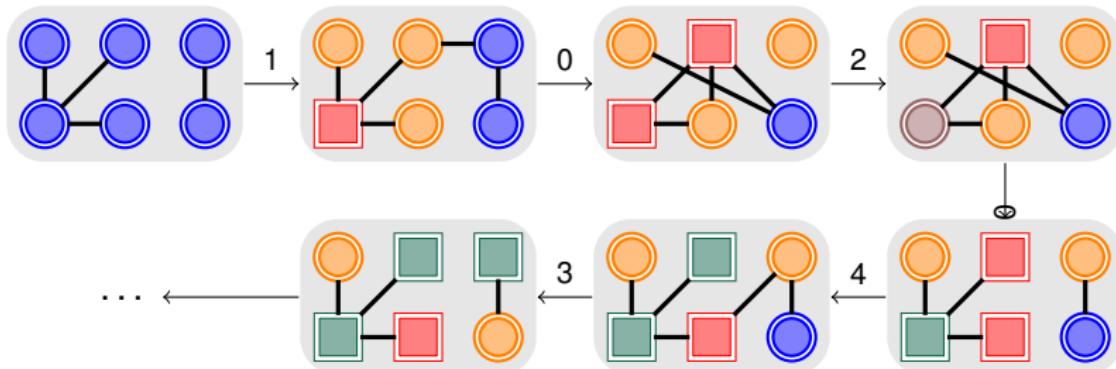
The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



Example



The strategies σ and τ define the play $\rho(\sigma, \tau, 6, P)$:



Studied Problem

Winning condition Win

The set of infinite plays ρ such that:

- 1 The maximal color repeated infinitely often is even
- 2 No unsafe transition is taken

Game problem for parity RBN

Input: A parity protocol P

Question: Does there exist N and a strategy σ for Player 1 such that for all strategies τ for Player 2:

$$\rho(\sigma, \tau, N, P) \in Win$$

How to solve games for parity RBN

The proof to solve such games respects the following steps :

- ① Shows that it is enough to consider local strategies for Player 2
- ② Show that in a Broadcast Reconfigurable Protocol (BRP), one can decide the existence of an infinite cycle

Local strategies

- Strategies that only depend on the control state labeling the active node
- There is a finite number of local strategies
- Once a local strategy is fixed, we obtain a normal BRP

Why is it enough to focus on local strategies

Proposition

If there exists a configuration and a strategy for Player 1 against any local strategy of Player 2, then there exists a configuration and a strategy for Player 1 winning against any strategy of Player 2.

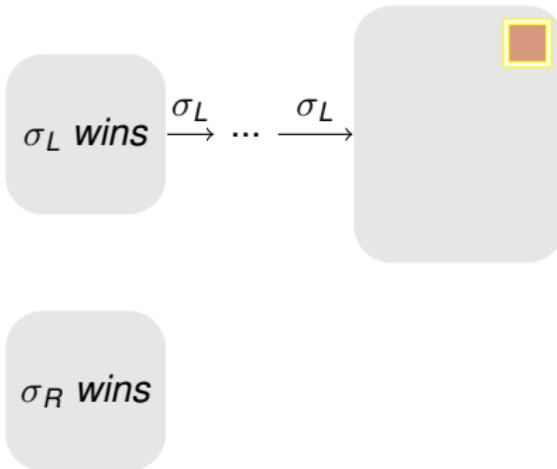
- The proof is by induction of the number of states of Player 2
- At the induction step, it isolates a state of Player 2 with two active edges L and R
- By induction if edge R is deleted, Player 1 has a winning strategy σ_L
- By induction if edge L is deleted, Player 1 has a winning strategy σ_R

Build a strategy using σ_L and σ_R

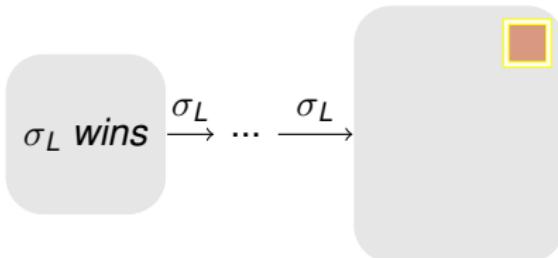
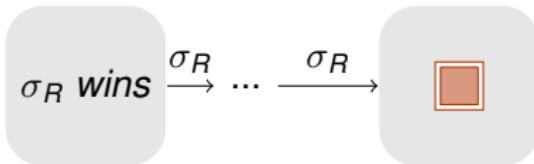
σ_L wins

σ_R wins

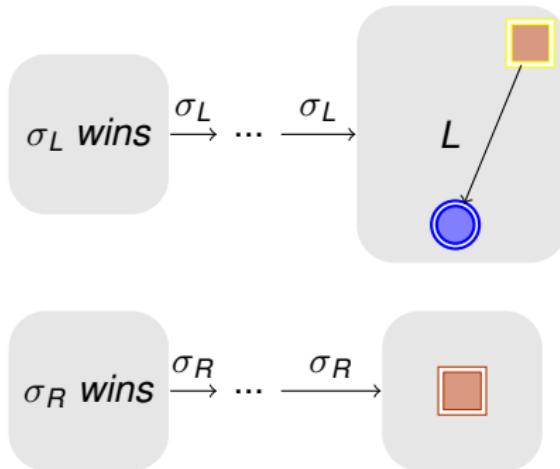
Build a strategy using σ_L and σ_R



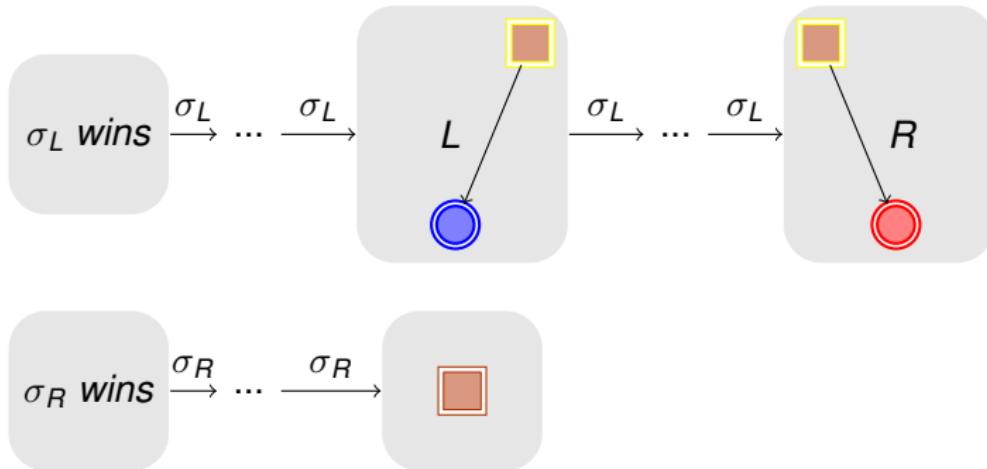
Build a strategy using σ_L and σ_R



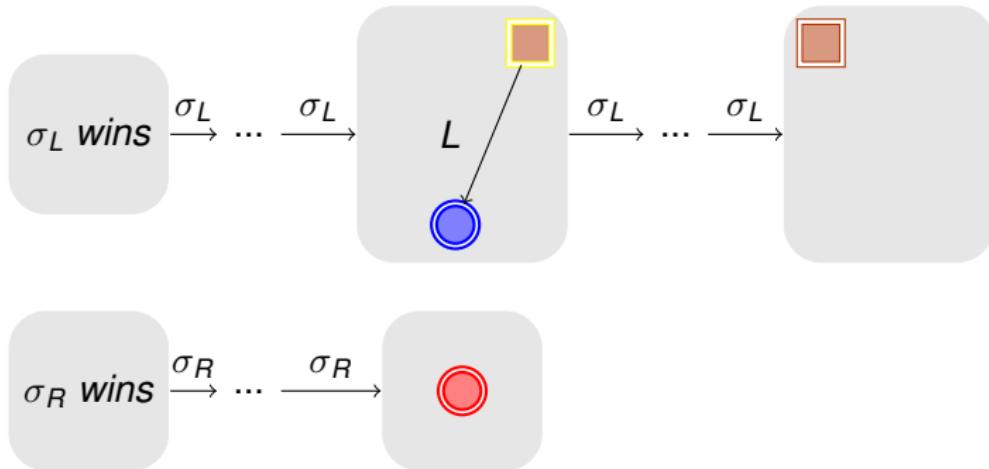
Build a strategy using σ_L and σ_R



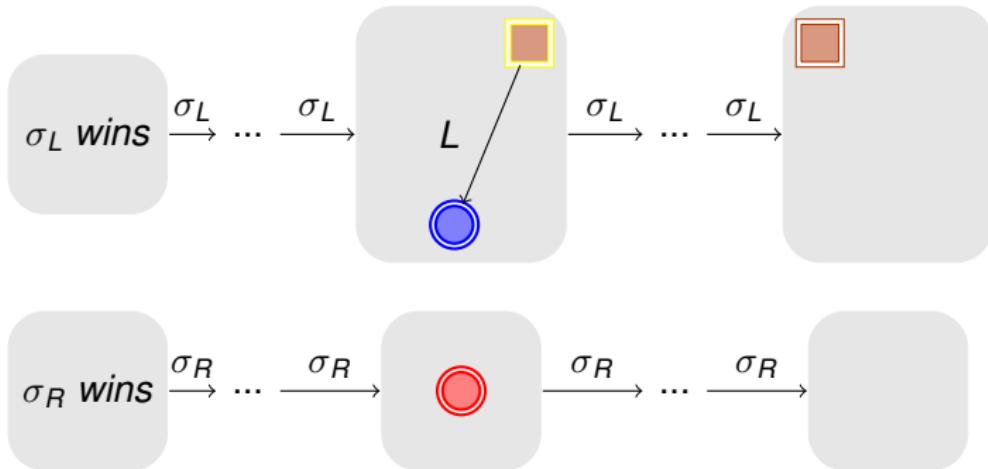
Build a strategy using σ_L and σ_R



Build a strategy using σ_L and σ_R



Build a strategy using σ_L and σ_R



Finding infinite path in a RBN

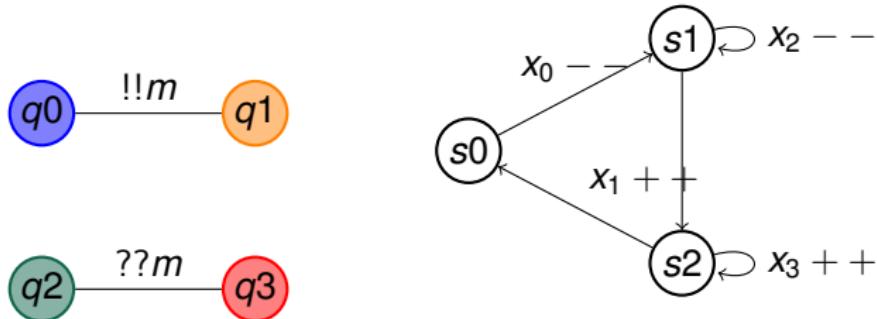
- Once a local strategy fixed for Player 2, we obtain a Reconfigurable Broadcast Network (RBN)
- We can compute its set of reachable sets
- We know there exists reachable configuration, with 'a lot' of nodes as desired in the reachable states
- We will find infinite path in such a RBN using Vector Addition System with States (VASS)

Theorem [Kosaraju & Sullivan 1988]

Detecting positive cycles in VASS can be done in PTIME.

Encoding RBN in a VASS

- Compute the reachable states
- Encode each transitions with reachable states into the VASS
- Check for positive cycles in the VASS



Complexity of game problem for parity RBN

Theorem

The game problem for parity RBN is in co-NP.

Idea of the proof:

- Guess a local strategy for Player 2
- Check if it is winning for any configurations against any strategies of Player 1
 - Basically, if the VASS has a positive cycle it is not winning
 - This can be done in PTIME
- If the local strategy is winning then the answer to the game problem is NO
- Furthermore we know that local strategies are enough for Player 2, hence if the answer to the game is NO there is a winning local strategy for Player 2

Outline

- ➊ Probabilistic Reconfigurable Broadcast Network (PRBN)
- ➋ Parity Reconfigurable Broadcast Networks (Parity RBN)
- ➌ Playing with probabilities in PRBN
- ➍ Conclusion and future works

Solving REACH_{max}⁼¹

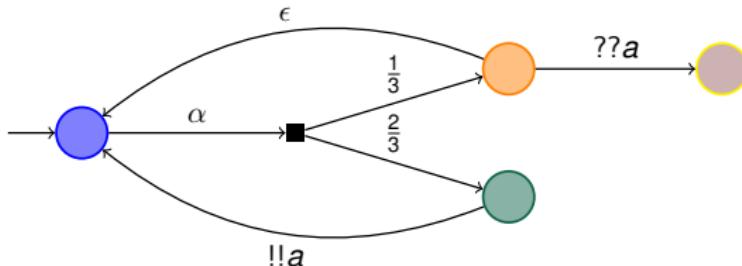
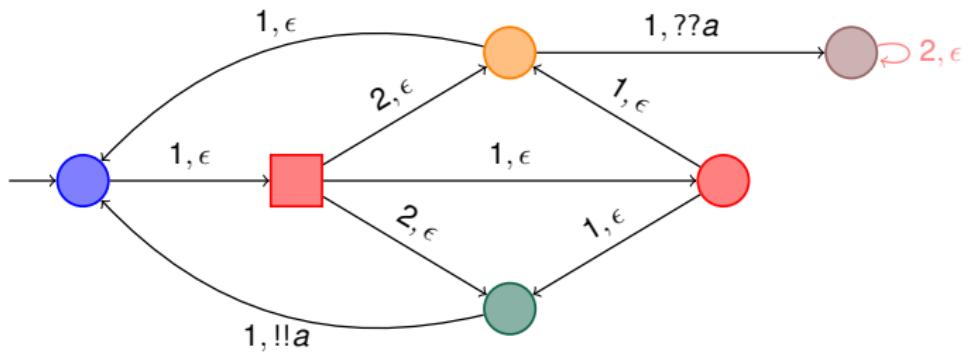
Meaning of REACH_{max}⁼¹: For some number of processes

- there exists a scheduler π that reaches target almost surely
- *i.e.* from any reachable configurations there is a path to target

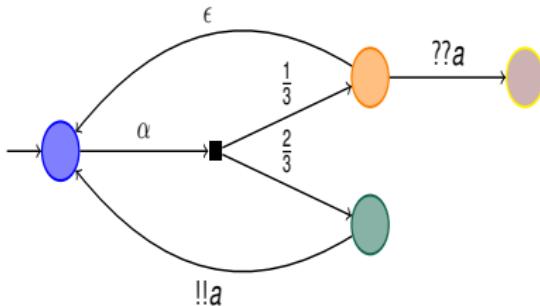
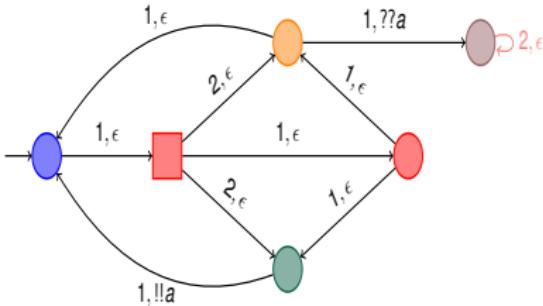
Idea of the reduction

- Let probabilistic choices to player 2
- Force “fairness” for Player 2 by even parities
- Allow Player 2 to abandon choices with odd parity

Reduction REACH_{max}⁼¹



Result for REACH_{max}⁼¹



Theorem

REACH_{max}⁼¹ is co-NP-complete.

Proof idea

- Player 2 infinitely often chooses the outcome in q_p , $2 \Leftrightarrow$ run of probability 0.
- Player 2, after some times, always let Player 1 chooses $\Leftrightarrow q_f$ reached for any reachable configuration.

Solving REACH_{min}^{<1}

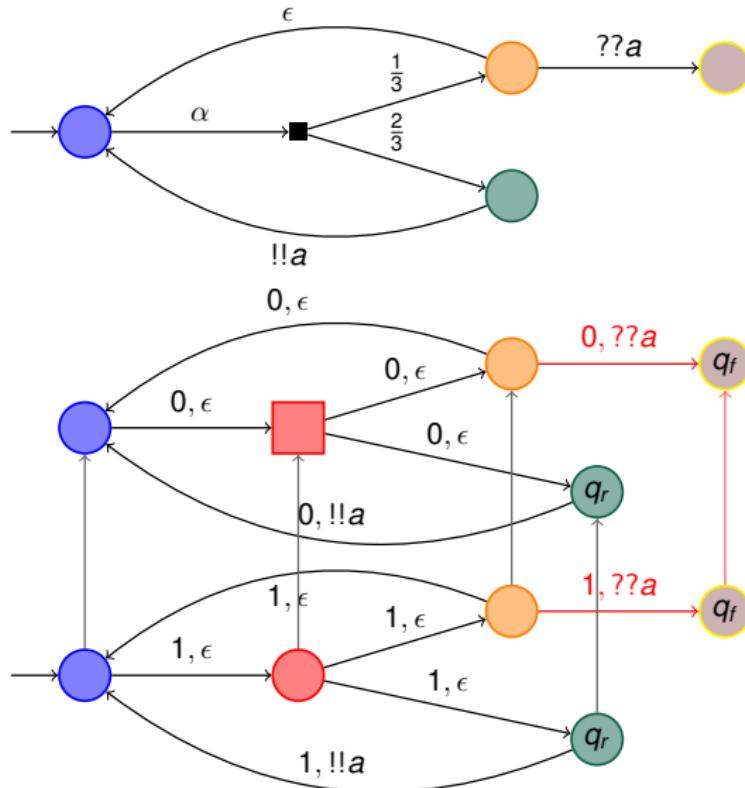
Meaning of REACH_{min}^{<1}: For some number of processes

- there exists a scheduler π that reaches a configuration.
- from this configuration, Player 1 can ensure not to reach target

Idea of the reduction

- Let Player 1 chooses a finite path
- Afterwards, play the game considering probabilistic states as states of Player 2

Reduction REACH_{min}^{<1}



Result for REACH_{min}^{<11}

Theorem

REACH_{min}^{<1} is co-NP-complete.

Proof idea:

- Player 1 chooses a finite prefix in the bottom copy
- Then the game can loop infinitely in the top copy

⇒ after a finite prefix q_f is avoided almost surely.

Outline

- ➊ Probabilistic Reconfigurable Broadcast Network (PRBN)
- ➋ Parity Reconfigurable Broadcast Networks (Parity RBN)
- ➌ Playing with probabilities in PRBN
- ➍ Conclusion and future works

Conclusion

Results

Problem	$\text{REACH}_{\min}^{=0}$	$\text{REACH}_{\min}^{<1}$	$\text{REACH}_{\max}^{=1}$	others
Complexity	coNP-complete	coNP-complete	coNP-complete	PTIME

Conclusion

Results

Problem	$\text{REACH}_{\min}^{=0}$	$\text{REACH}_{\min}^{<1}$	$\text{REACH}_{\max}^{=1}$	others
Complexity	coNP-complete	coNP-complete	coNP-complete	PTIME

Questions

- What about the quantitative version ?
- Can we do more complex properties than simple reachability ?
- We can solve some kind of parity games, is there a logic characterization corresponding to these games ?
- Does this technique work for networks with other communication primitives ?