
Expressivity of

Non-atomic Asychronous Networks

with Antoine Durand-Gasselin, Javier Esparza and Rupak Majumdar

Pierre Ganty IMDEA Software Institute, Madrid



processes have no identity



communication through a shared bounded-value register

processes have no identity



communication through a shared bounded-value register

register can be read from, written to but not locked

w(g)

r(g)

w(g)

r(g)

w(g)

r(g)

processes have no identity



communication through a shared bounded-value register

register can be read from, written to but not locked

w(g)

r(g)

w(g)

r(g)

w(g)

r(g)

processes have no identity

1 leader process + N contributors 
N



communication through a shared bounded-value register

register can be read from, written to but not locked

w(g)

r(g)

w(g)

r(g)

w(g)

r(g)

processes have no identity

What can such network compute?

1 leader process + N contributors 
N



r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



0

Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



0

Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1) r(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1) r(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



2

w(1) r(1) w(2)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



2

w(1) r(1) w(2)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



2

w(1) r(1) w(2) r(2)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



2

w(1) r(1) w(2) r(2)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



2

w(1) r(1) w(2) r(2) r(2)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1) r(1) w(2) r(2) r(2) w(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1) r(1) w(2) r(2) r(2) w(1) r(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



1

w(1) r(1) w(2) r(2) r(2) w(1) r(1) r(1)Run:

r(1)

r(2)

w(1)
r(2)

w(2)
r(1)

w(1)
r(2)

w(2)
r(1)



How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do



How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching q) X-hard problems



How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching q) X-hard problems



How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

Today solving means repeatedly reaching q

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching q) X-hard problems



Parameterized model-checking

Given:

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

Is there N : have an accepting run ?

N copies



Parameterized model-checking

Given:

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

Is there N : have an accepting run ?

N copies

Is there an infinite accepting run with finitely many processes?



NP-complete



NP-complete

when all processes are given by finite state machine



w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)



w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)
r(1) w(1)



w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)
r(1) w(1)
r(1) w(1)r(1) w(1)



Copycat Lemma

w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)

w(1) r(2) r(1) r(3)

r(1) w(2) r(1) w(3)

r(1) w(1)



Copycat Lemma

w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)

w(1) r(2) r(1) r(3)

r(1) w(2) r(1) w(3)

r(1) w(1)

r(1) w(1)



Copycat Lemma

w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)

w(1) r(2) r(1) r(3)

r(1) w(2) r(1) w(3)

r(1) w(1)

r(1) w(1)



Copycat Lemma

w(1)r(1)

w(1) r(2) r(1) r(3)

r(1) w(2) r(1) w(3)

r(1) w(1)

r(1) w(1)

w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)



Copycat Lemma

w(1)r(1)

w(1) r(2) r(1) r(3)

r(1) w(2) r(1) w(3)

r(1) w(1)

r(1) w(1)

w(1) r(1) r(1) w(2) r(2) w(1) r(1) r(1) w(3) r(3)

r(1) w(1)r(1) w(1)r(1) w(1)

w(1)r(1) w(1)r(1) w(1)r(1)



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

ω

I Headcount of contributors not needed: • → ω



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

I Never delete an ω (Copycat lemma)

ω
ω

I Headcount of contributors not needed: • → ω



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

I Never delete an ω (Copycat lemma)

ω
ω

〈
leader state , store value , { contribs states with ω }

〉Build a graph αTS whose nodes reads as:

edges are defined following leader or contributors moves

I Headcount of contributors not needed: • → ω



Finite abstraction

r(1)

r(2)

r(3)

w(1)
w(2)

w(3)

r(3)

r(1)

r(1)

r(2)

r(2)

r(3)

I Never delete an ω (Copycat lemma)

ω
ω

〈
leader state , store value , { contribs states with ω }

〉Build a graph αTS whose nodes reads as:

edges are defined following leader or contributors moves

I Headcount of contributors not needed: • → ω



Decision procedure

Is there an infinite accepting run with finitely many processes?



Decision procedure

Is there an infinite accepting run with finitely many processes?〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉
αTS



Decision procedure

Is there an infinite accepting run with finitely many processes?〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉
αTS



Decision procedure

Is there an infinite accepting run with finitely many processes?

∃ reachable cycle ∩ Buchi states 6= ∅

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉
αTS



Decision procedure

Is there an infinite accepting run with finitely many processes?

each contributor involved makes a roundtrip
iff

the cycle has ~0-weight

∃ reachable cycle ∩ Buchi states 6= ∅

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉
αTS



Decision procedure

Is there an infinite accepting run with finitely many processes?

Has αTS a reachable ~0-weight cycle visiting Buchi states ?⇒
Satisfibility of an existential Presburger formula, in NP

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉

Ω�(xt1 , . . . , xtn) ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)

αTS



Decision procedure

Is there an infinite accepting run with finitely many processes?

Has αTS a reachable ~0-weight cycle visiting Buchi states ?⇒
Satisfibility of an existential Presburger formula, in NP

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉

Ω�(xt1 , . . . , xtn) ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
Parikh Image for finite state automaton [Seidl et al., ICALP’04]

αTS



Wake up!



Wake up!

I did a mistake



Wake up!

I did a mistake

This is not a polynomial!



Wake up!

〈
leader state , store value , { contribs states with ω }

〉

I did a mistake

This is not a polynomial!

There are exponentially many nodes



Wake up!

〈
leader state , store value , { contribs states with ω }

〉
Obs: along every path of αTS, the states with ω can only grow

Step 1: compute the subgraph for a guessed growing sequence

Step 2: compute the formula and check for SAT

I did a mistake

This is not a polynomial!

There are exponentially many nodes



The NP membership in perspective

Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

The non-parameterized variant is PSPACE-hard [Kozen,FOCS’77]



The NP membership in perspective

Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

The non-parameterized variant is PSPACE-hard [Kozen,FOCS’77]

What if we give processes some auxiliary memory?



Processes + stacks



Processes + stacks

remains in NP (proof generalization)

I To the leader only:



Processes + stacks

remains in NP (proof generalization)

I To the leader only:

I To both the leader and contributor:

in NEXPTIME by reduction to the previous case



Processes + stacks

remains in NP (proof generalization)

I To the leader only:

I To both the leader and contributor:

in NEXPTIME by reduction to the previous case

Compare with the undecidability result for fixed number of
processes all of them with stack



Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉



Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉

〈q, 〉



Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉

〈q, 〉

Has αTS a reachable ~0-weight cycle visiting Buchi states ?



Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉

〈q, 〉

Has αTS a reachable ~0-weight cycle visiting Buchi states ?

〈q, 〉 〈q, 〉



Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉

〈q, 〉

Ω�(xt1 , . . . , xtn) ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
Parikh Image for context-free grammars [Seidl et al., CADE’05][Esparza, Fun. Informatica’97]

Has αTS a reachable ~0-weight cycle visiting Buchi states ?

Where cycle means

〈q, 〉 〈q, 〉



Everybody has a stack

Is there an infinite accepting run with finitely many processes?



Everybody has a stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME
by reduction to the “only the leader has a stack” case



Everybody has a stack

Compare with the undecidability result for fixed number of
processes all of them with stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME
by reduction to the “only the leader has a stack” case



Everybody has a stack

Compare with the undecidability result for fixed number of
processes all of them with stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME
by reduction to the “only the leader has a stack” case

Proof of correctness is not simple or easy



q, γ

q, γ

q, γ q′

q′

q′

=

+

Replace a contributor run by more runs using “less memory”



Less memory = retrieve shallow stack frames only



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

I Examples



Less memory = retrieve shallow stack frames only

• having each contrib keeping track of its topmost O(n3)
frames suffice

• Memory is now bounded and hard-encoded into the states

• Fall back onto the “only the leader has a stack” case



Conclusions

nexptime

np-c np-c

pspace-hard

fsm
fsm

pdm

pdm

?

conp-c conp-c

pspace-c

fsm
fsm

pdm

pdm

conp-c

Safety checking (cav’13) Liveness checking (cav’15)

Liveness is as easy as safety

Parameterized verification is easier than non-parameterized

Adding memory leads to harder, but not undecidable, problems

I Contrast: broadcast protocols

I Contrast: n finite state machines

I Contrast: fixed pushdown systems



Conclusions

nexptime

np-c np-c

pspace-hard

fsm
fsm

pdm

pdm

?

conp-c conp-c

pspace-c

fsm
fsm

pdm

pdm

conp-c

Safety checking (cav’13) Liveness checking (cav’15)

Liveness is as easy as safety

Parameterized verification is easier than non-parameterized

Adding memory leads to harder, but not undecidable, problems

I Contrast: broadcast protocols

I Contrast: n finite state machines

I Contrast: fixed pushdown systems


