Expressivity of
Non-atomic Asychronous Networks

Pierre Ganty IMDEA Software Institute, Madrid

with Antoine Durand-Gasselin, Javier Esparza and Rupak Majumdar

processes have no identity

processes have no identity

communication through a shared bounded-value register

processes have no identity

communication through a shared bounded-value register

register can be read from, written to but not locked

processes have no identity

communication through a shared bounded-value register

register can be read from, written to but not locked

1 leader process + NN contributors

= f@q w(g)

e

> IV

>

r(g)

processes have no identity

communication through a shared bounded-value register

register can be read from, written to but not locked

1 leader process + NN contributors

= f.q w(g)

> IV

b .

r(g)

What can such network compute?

sz
&
r(2)

2=
&
r(2)

Run:

Run:

r(2)

=5 (1)
i ot
r(2)

Run: w(1) r(1) w(2)

=22 1)
8 oo
r(2)

Run: w(1) (1) w(2) r(2)

=22 1)
ot
r(2)

Run: w(l) (1) w(2) r(2) r(2) w(1l) r(1)

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching ¢) X-hard problems

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching ¢) X-hard problems

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching ¢) X-hard problems

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

Today solving means repeatedly reaching q

Parameterized model-checking

Given
r(3)
2 o AN
@u_j* r(1 r(1) w(2
NG Nl ?ru)
T(S)\é ?“03/v @Q

N coples

have an accepting run ?

Is there N: |= & ||
i{

Parameterized model-checking

_~ @ A
o ?\

)
—> 7"(2) —>

DC
Is there INV: E_’é | |

N coples
Is there an infinite accepting run with finitely many processes?

e
(

have an accepting run 7

NP-complete

NP-complete

when all processes are given by finite state machine

w(2) 7(2)

tn o s

Copycat Lemma

Copycat Lemma

Copycat Lemma

Copycat Lemma

Copycat Lemma

Finite abstraction

Finite abstraction

Finite abstraction

Finite abstraction

Finite abstraction

7 D |l
r(1) r(1 w
. r2) BT —>@/ ?r(l)
r(3) r(3) r(2)
Y |w()

» Headcount of contributors not needed: o — W

Finite abstraction

» Headcount of contributors not needed: o — w
» Never delete an w (Copycat lemma)

Finite abstraction

» Headcount of contributors not needed: e — w
» Never delete an w (Copycat lemma)

Build a graph aTS whose nodes reads as:

('leader state , store value , { contribs states with w })

edges are defined following leader or contributors moves

Finite abstraction

» Headcount of contributors not needed: e — w
» Never delete an w (Copycat lemma)

Build a graph aTS whose nodes reads as:

('leader state , store value , { contribs states with w })

edges are defined following leader or contributors moves

Decision procedure

Is there an infinite accepting run with finitely many processes?

Decision procedure

Is there an infinite accepting run with finitely many processes?

{aor,>v0>{apc}) leader state, store value, {contribs states w/ w})
aTS

Decision procedure

Is there an infinite accepting run with finitely many processes?

{aor,>v0>{apc}) leader state, store value, {contribs states w/ w})
aTS

Decision procedure

Is there an infinite accepting run with finitely many processes?

{aor,>v0>{apc}) leader state, store value, {contribs states w/ w})
aTS

J reachable cycle N Buchi states # ()

Decision procedure

<q0L , V0> L90C }> leader state, store value, {contribs states w/ }>
aTS

Decision procedure

<q0L , V0> L90C }> leader state, store value, {contribs states w/ w}>
aTS

Has o TS a reachable

Satisfibility of an existential Presburger formula, in NP

) Ao (S0 = S t)

Decision procedure

<q0L , V0> L90C }> leader state, store value, {contribs states w/ w}>
aTS

Has o TS a reachable

Satisfibility of an existential Presburger formula, in NP

) Ao (S0 = S t)

Parikh Image for finite state automaton [Seidl et al., ICALP’04]

Wake up!

Wake up!

| did a mistake

Wake up!

| did a mistake

This is not a polynomial!

Wake up!

| did a mistake
This is not a polynomial!

There are exponentially many nodes

~—_
< leader state , store value , \{ contribs states with wﬁ

Wake up!

| did a mistake
This is not a polynomial!

There are exponentially many nodes

~—_
< leader state , store value , \{ contribs states with wﬁ

Obs: along every path of aTS, the states with w can only grow

Step 1: compute the subgraph for a guessed growing sequence
Step 2: compute the formula and check for SAT

he NP membership in perspective

The non-parameterized variant is PSPACE-hard [Kozen,FOCS'77]

Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

he NP membership in perspective

The non-parameterized variant is PSPACE-hard [Kozen,FOCS'77]

Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

What if we give processes some auxiliary memory?

Processes + stacks

Processes + stacks

» To the leader only:

remains in NP (proof generalization)

Processes + stacks

» To the leader only:

remains in NP (proof generalization)

» [o both the leader and contributor:

iIn NEXPTIME by reduction to the previous case

Processes + stacks

» To the leader only:

remains in NP (proof generalization)

» [o both the leader and contributor:

iIn NEXPTIME by reduction to the previous case

Compare with the undecidability result for fixed number of
processes all of them with stack

Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

leader state, store value, {contribs states w/ w})

Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

lleader state

Qe value, {contribs states w/ w})

Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

leader state

Qe value, {contribs states w/ w})

,4

Has aTS a reachable 6—weight cycle visiting Buchi states ?

Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

Qe value, {contribs states w/ w})

Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

Qe value, {contribs states w/ w})

<Q7 -> i 4 <Q7

) Ao (S0 = S)

Parikh Image for context-free grammars [Seidl et al., CADE’'05][Esparza, Fun. Informatica’97]

Everybody has a stack

Is there an infinite accepting run with finitely many processes?

Everybody has a stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME

by reduction to the “only the leader has a stack”™ case

Everybody has a stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME

by reduction to the “only the leader has a stack”™ case

Compare with the undecidability result for fixed number of
processes all of them with stack

Everybody has a stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME

by reduction to the “only the leader has a stack”™ case

Compare with the undecidability result for fixed number of
processes all of them with stack

Proof of correctness is not simple or easy

less memory”

Replace a contributor run by more runs using

Less memory = retrieve shallow stack frames only

Less memory = retrieve shallow stack frames only

=

» Examples

Less memory = retrieve shallow stack frames only

» Examples

v

Less memory = retrieve shallow stack frames only

» Examples

Less memory = retrieve shallow stack frames only

» Examples

Less memory = retrieve shallow stack frames only

» Examples

Less memory = retrieve shallow stack frames only

» Examples

Less memory = retrieve shallow stack frames only

e having each contrib keeping track of its topmost O(n?)
frames suffice

e Memory is now bounded and hard-encoded into the states

e Fall back onto the “only the leader has a stack™ case

Conclusions

Safety checking (CAV’13) Liveness checking (CAV’15)

Liveness is as easy as safety

» Contrast: broadcast protocols

Parameterized verification is easier than non-parameterized
» Contrast: n finite state machines

Adding memory leads to harder, but not undecidable, problems
» Contrast: fixed pushdown systems

Conclusions

Safety checking (CAV’13) Liveness checking (CAV’15)

Liveness is as easy as safety

» Contrast: broadcast protocols

Parameterized verification is easier than non-parameterized
» Contrast: n finite state machines

Adding memory leads to harder, but not undecidable, problems
» Contrast: fixed pushdown systems

