

Expressivity of Non-atomic Asynchronous Networks

Pierre Ganty

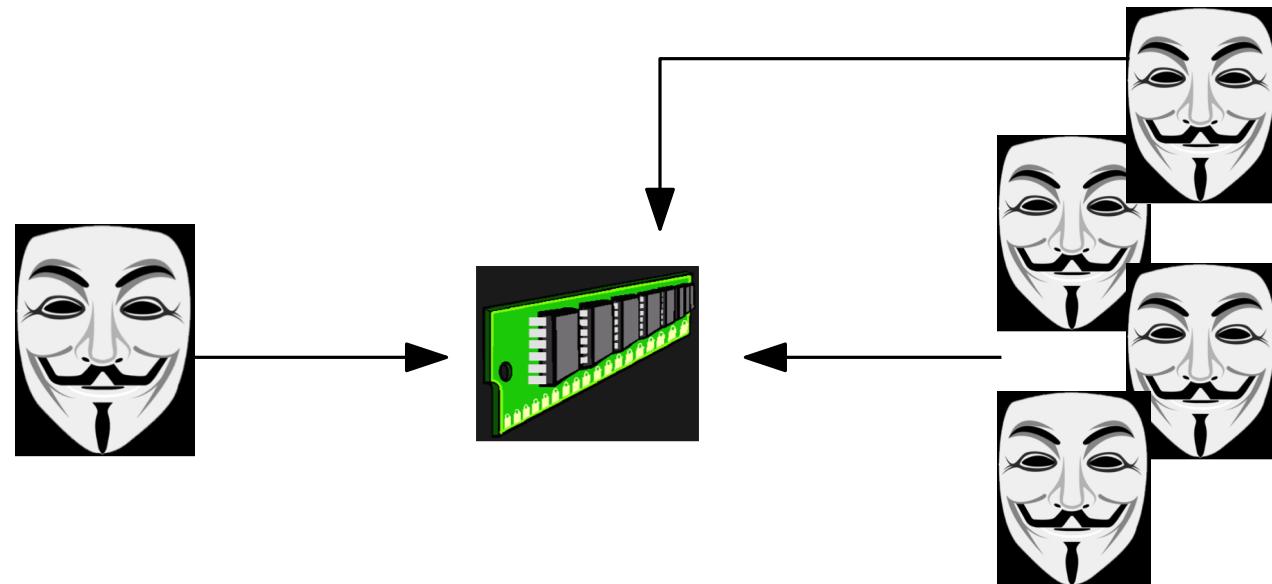
IMDEA Software Institute, Madrid

with Antoine Durand-Gasselin, Javier Esparza and Rupak Majumdar

processes have no identity

processes have no identity

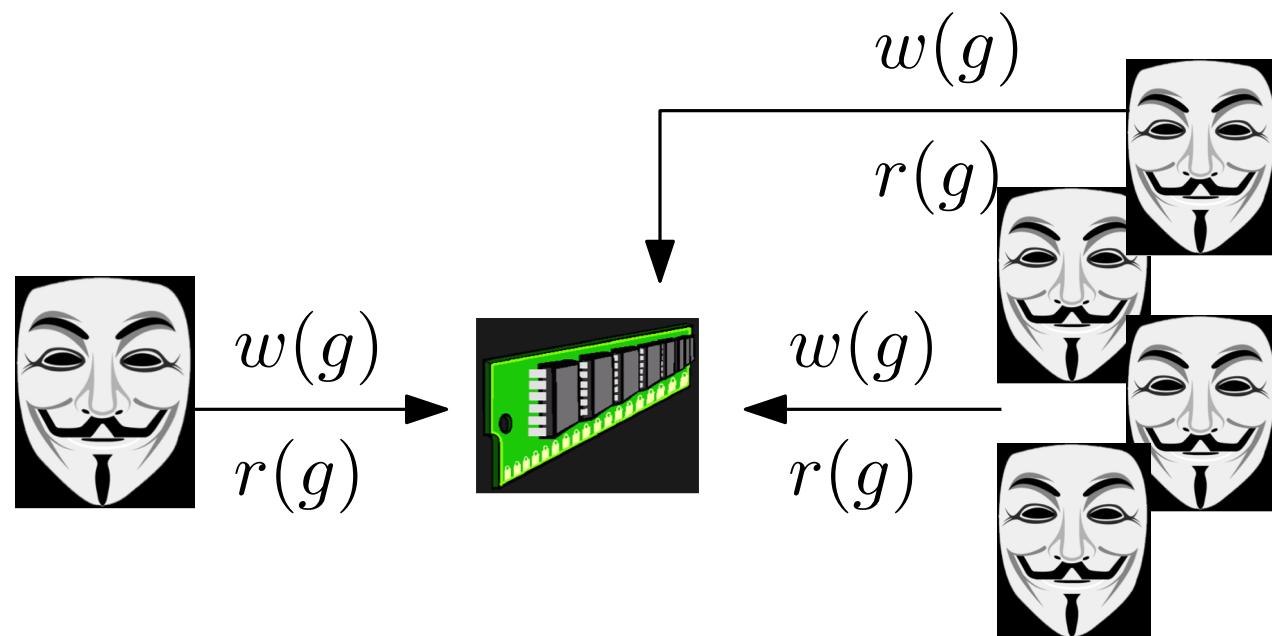
communication through a shared bounded-value register



processes have no identity

communication through a shared bounded-value register

register can be read from, written to but not **locked**

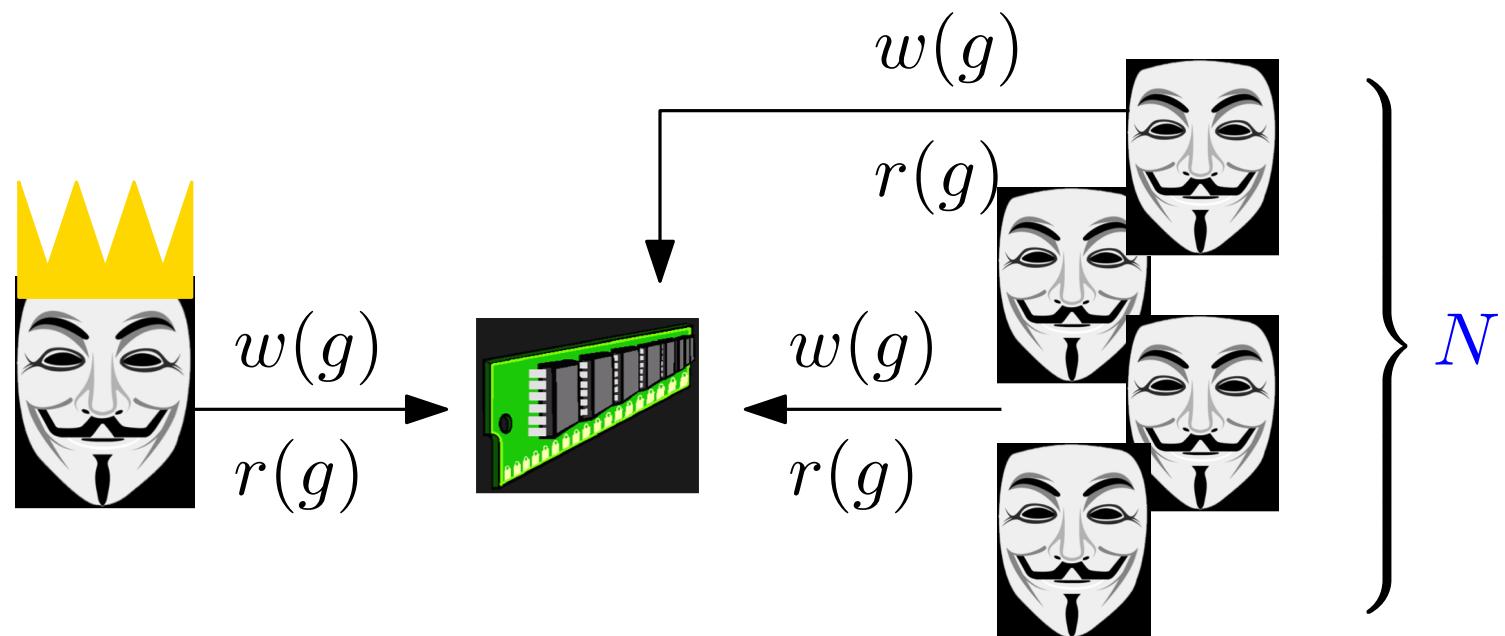


processes have no identity

communication through a shared bounded-value register

register can be read from, written to but not **locked**

1 leader process + N contributors

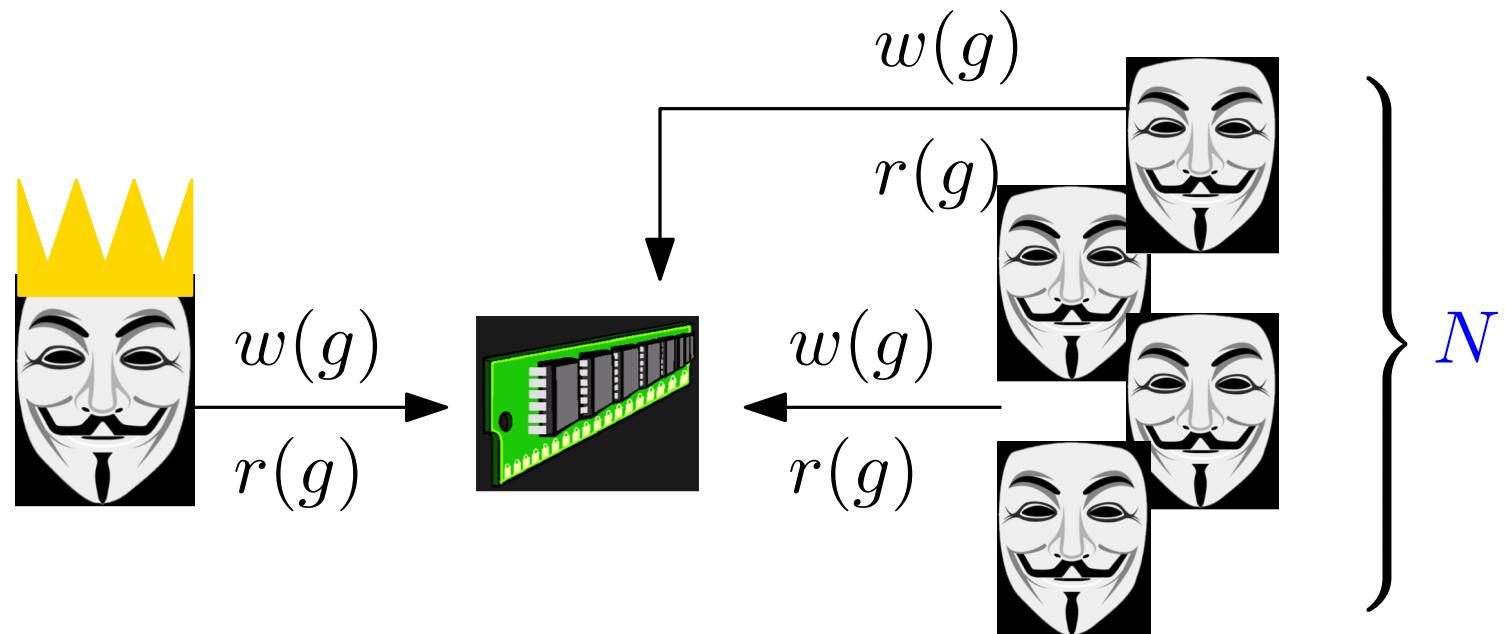


processes have no identity

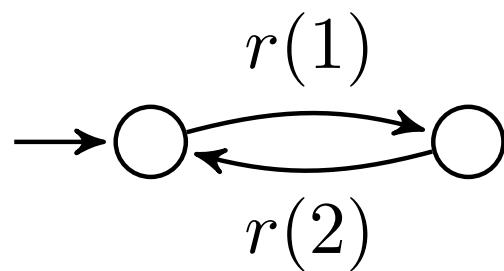
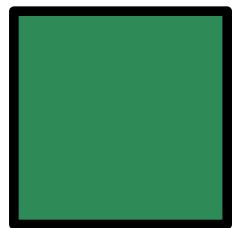
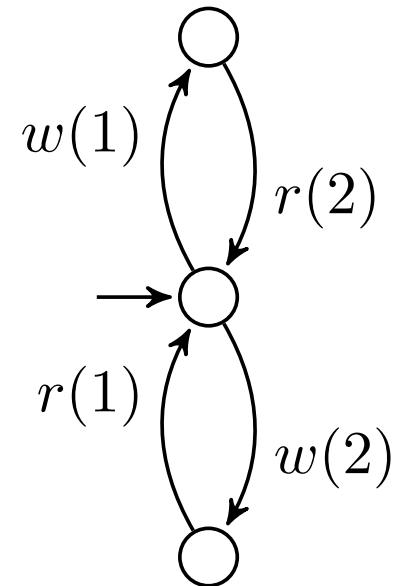
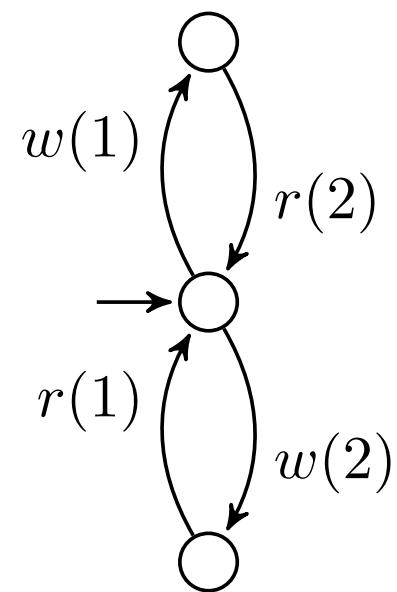
communication through a shared bounded-value register

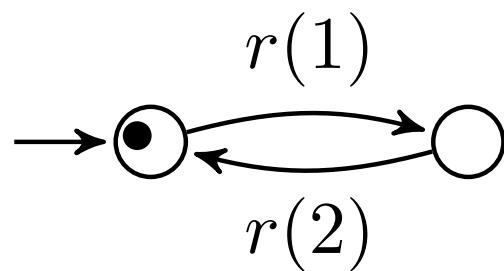
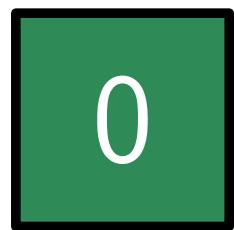
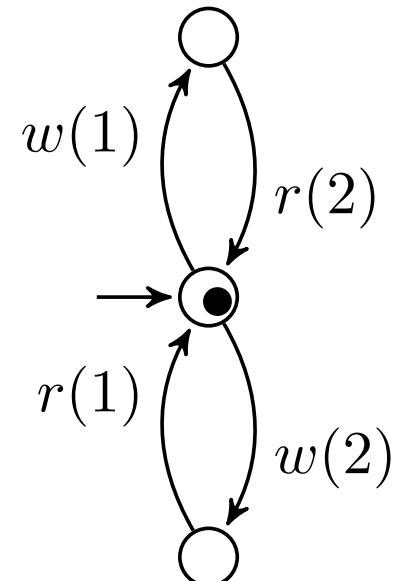
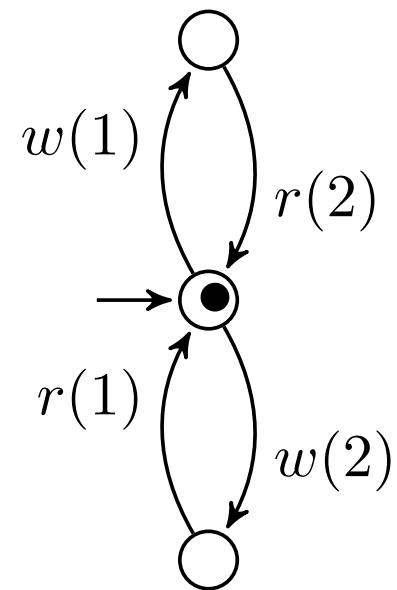
register can be read from, written to but not **locked**

1 leader process + N contributors

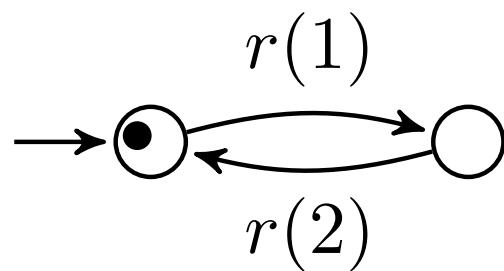
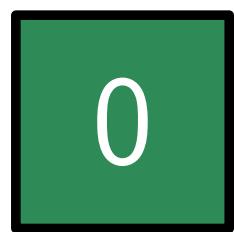
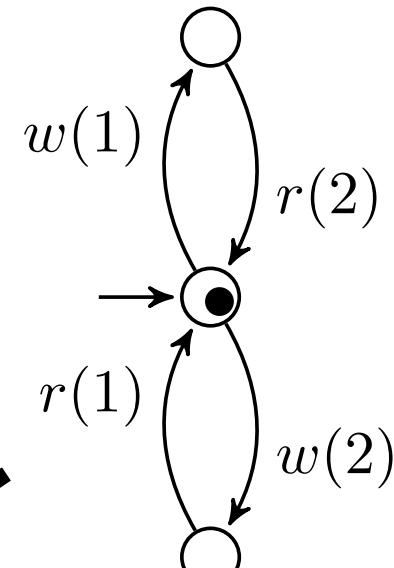
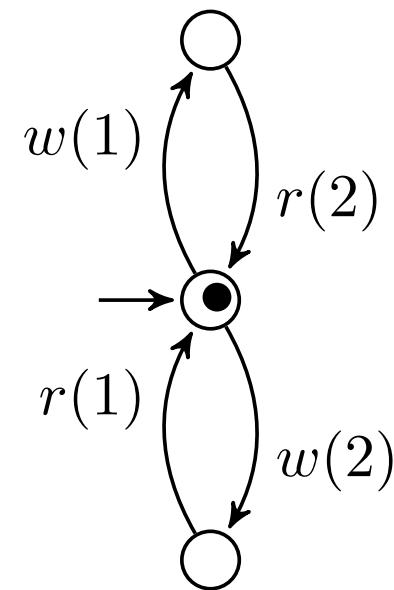


What can such network compute?

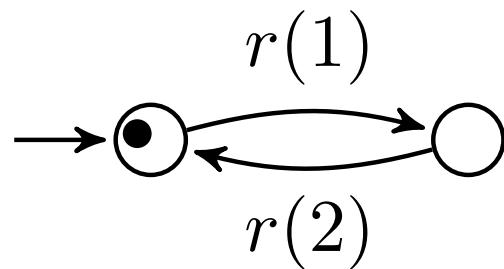




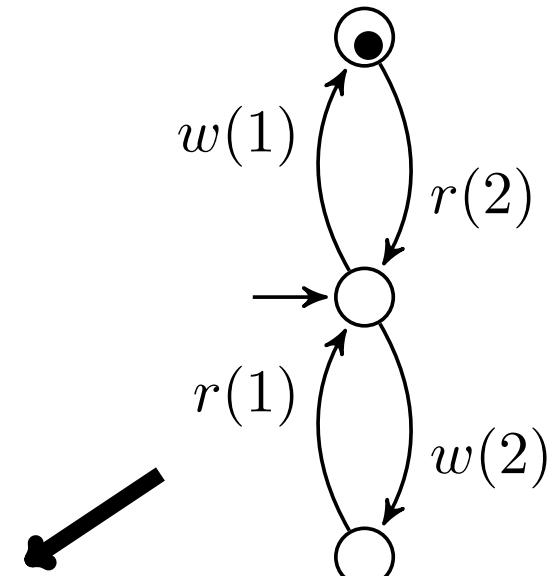
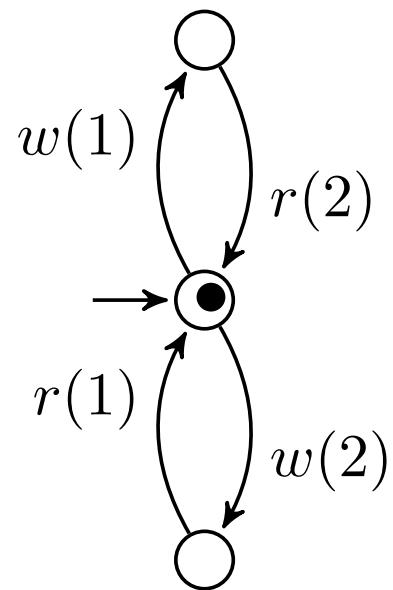
Run:

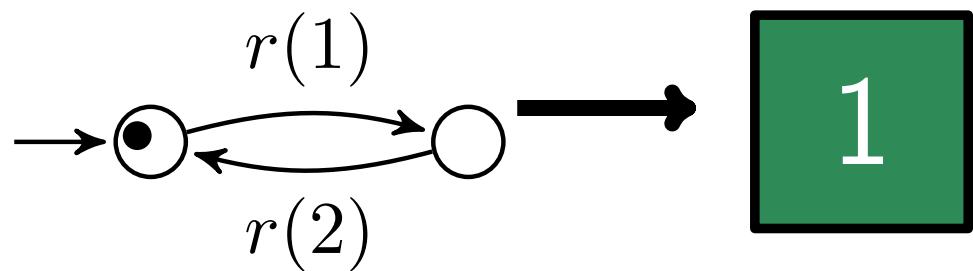


Run:

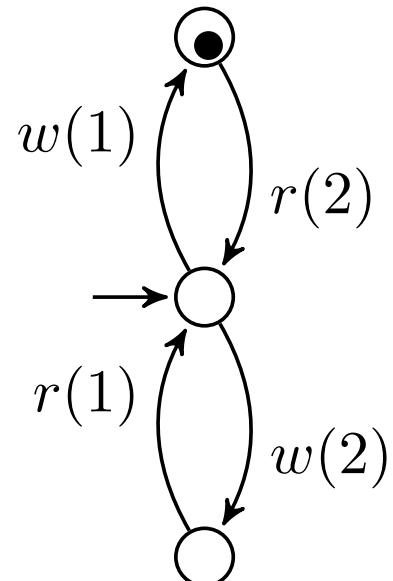
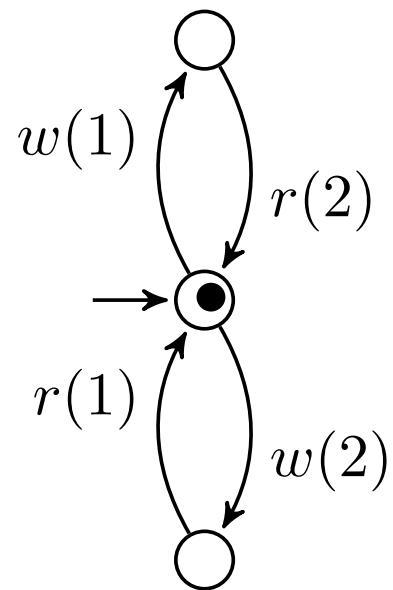


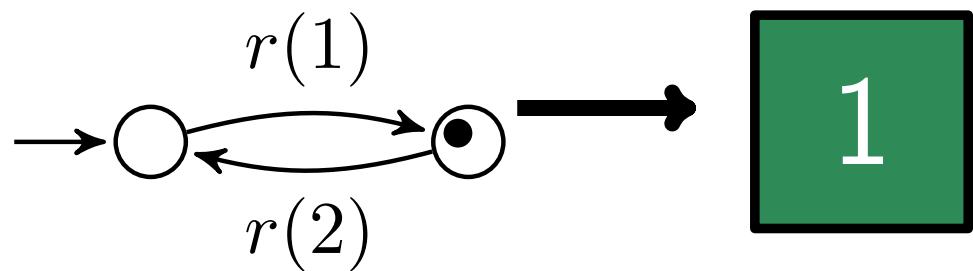
Run: $w(1)$



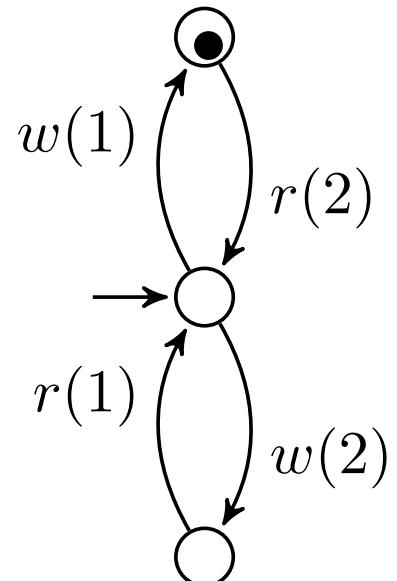
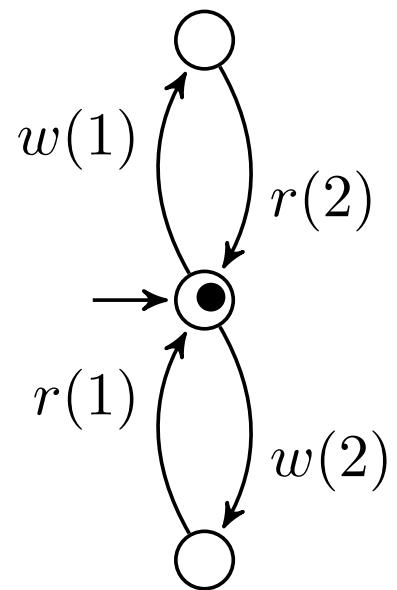


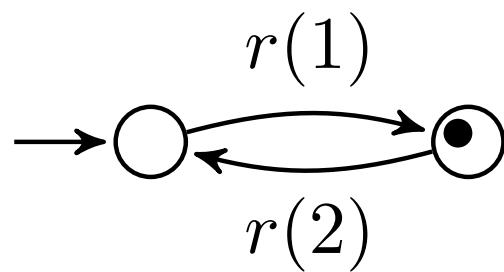
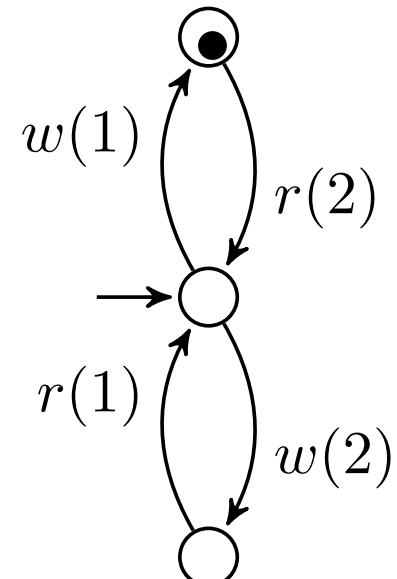
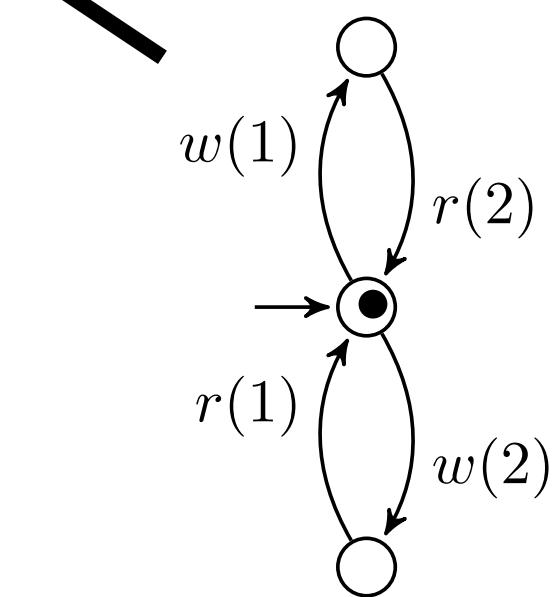
Run: $w(1)$



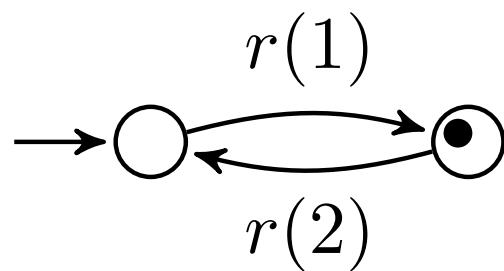
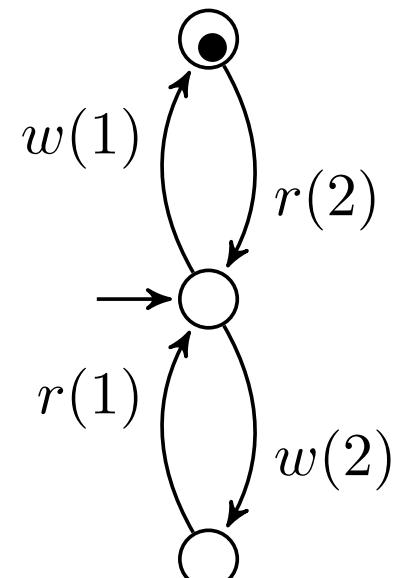
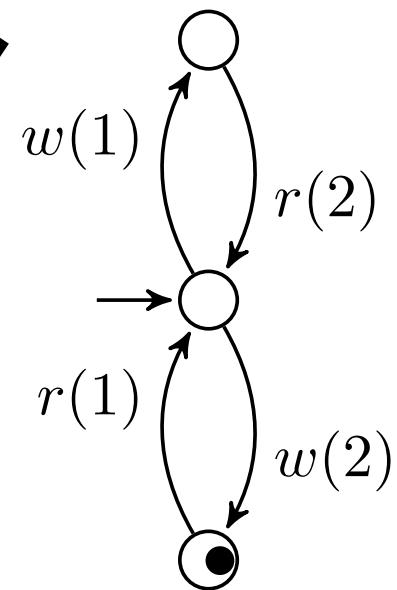


Run: $w(1) \ r(1)$

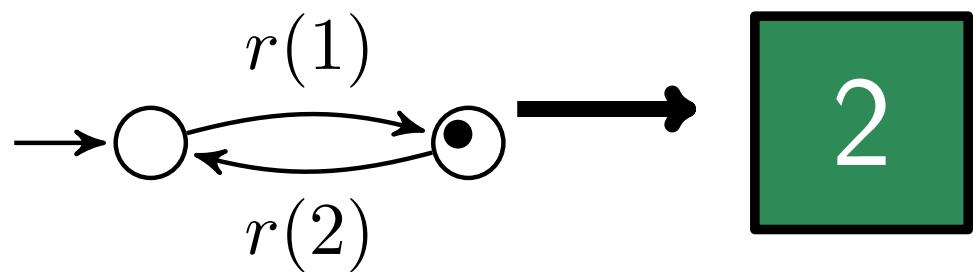




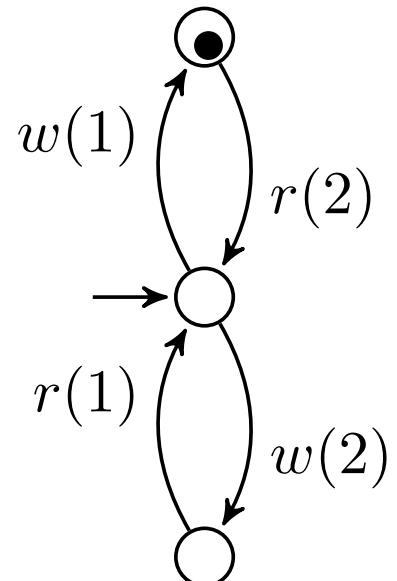
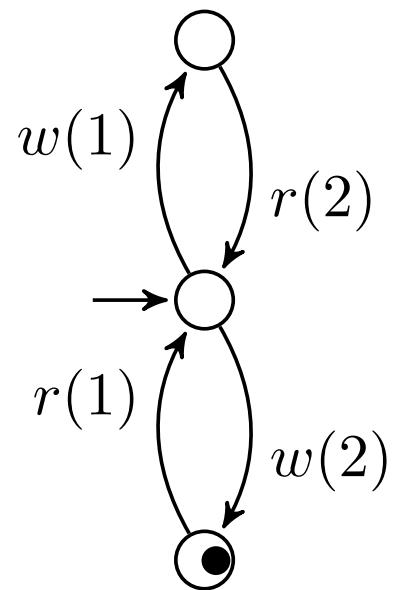
Run: $w(1) \ r(1)$

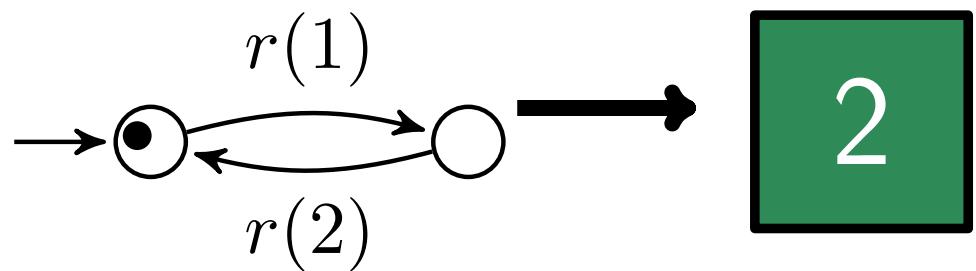


Run: $w(1) \ r(1) \ w(2)$

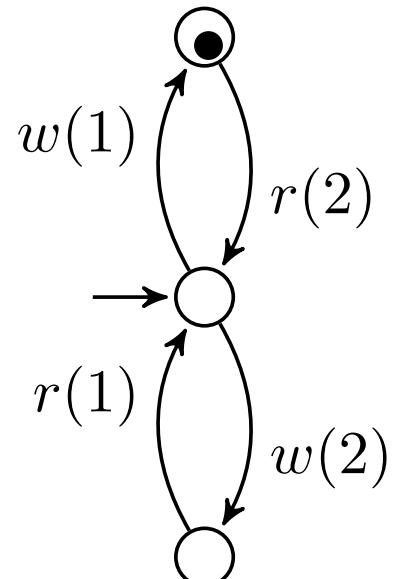
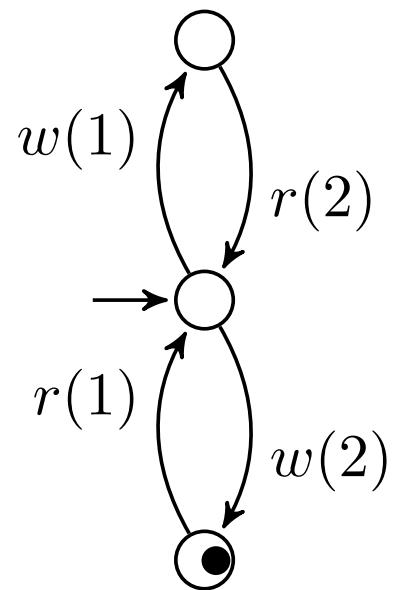


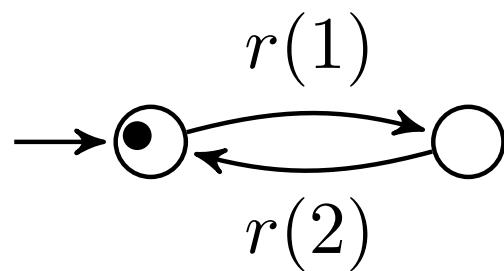
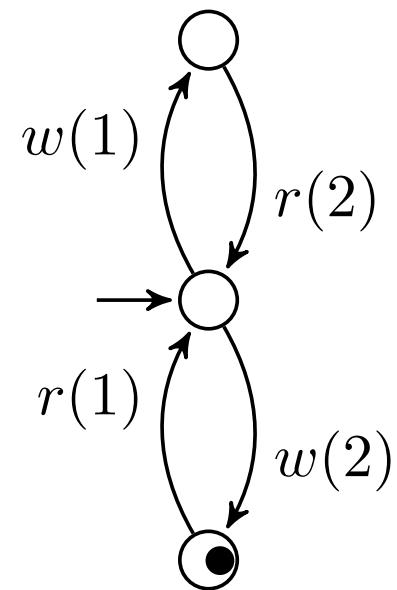
Run: $w(1)$ $r(1)$ $w(2)$



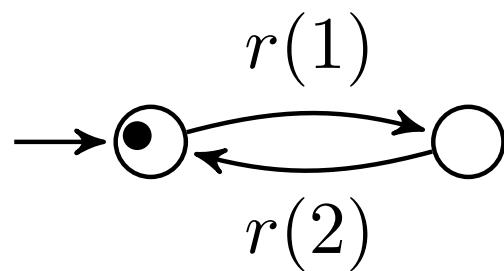
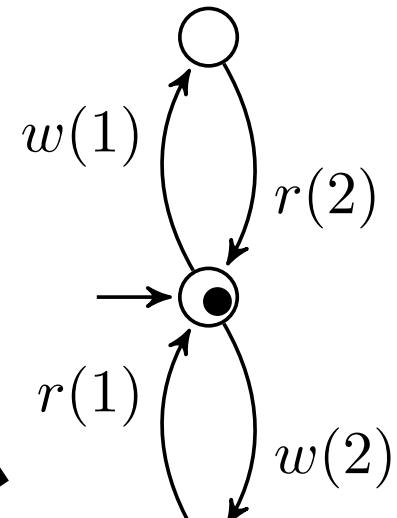
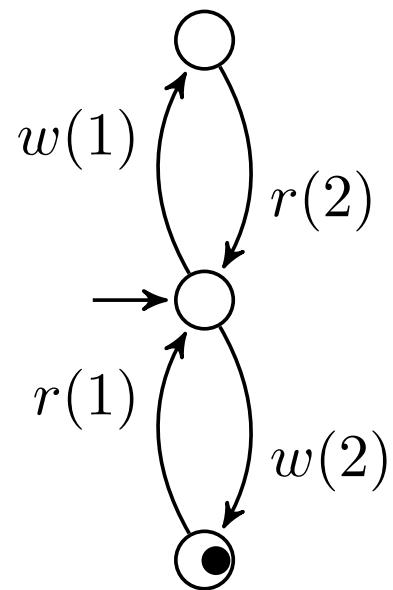


Run: $w(1) \ r(1) \ w(2) \ r(2)$

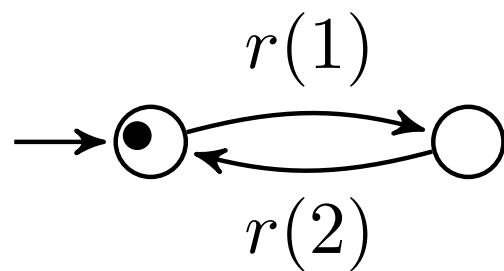
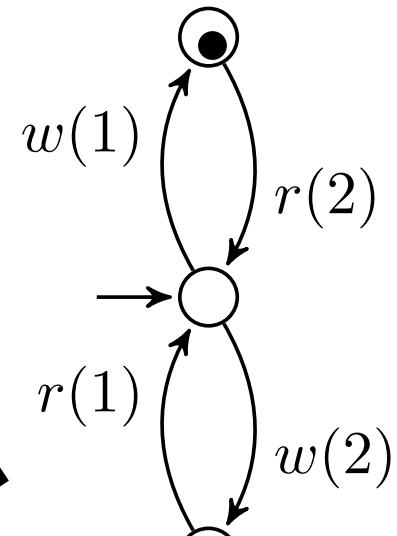
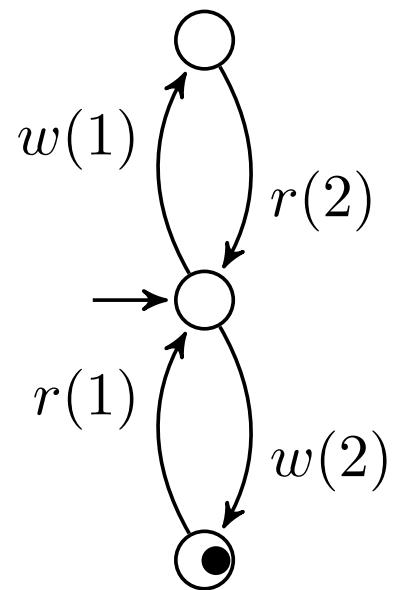




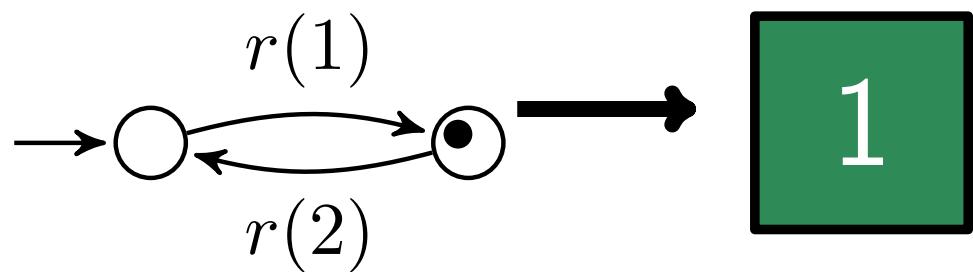
Run: $w(1) \ r(1) \ w(2) \ r(2)$



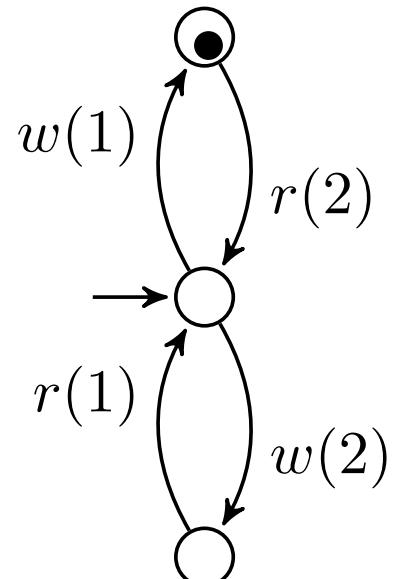
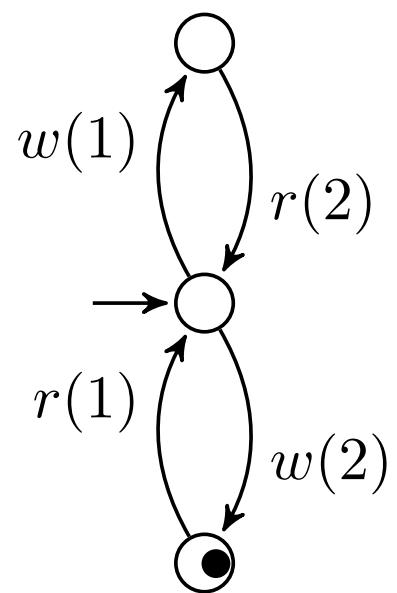
Run: $w(1) \ r(1) \ w(2) \ r(2) \ r(2)$

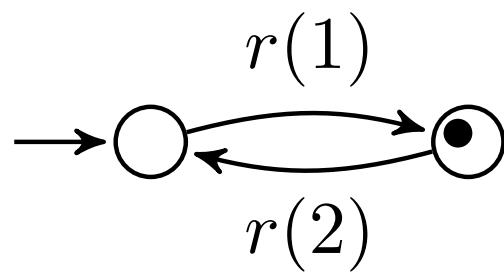
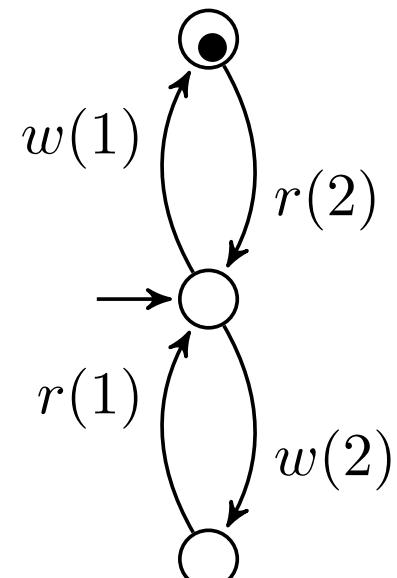
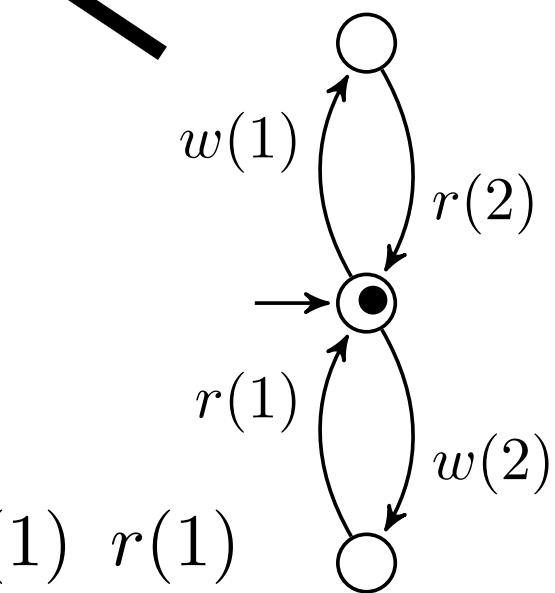


Run: $w(1) \ r(1) \ w(2) \ r(2) \ r(2) \ w(1)$



Run: $w(1) \ r(1) \ w(2) \ r(2) \ r(2) \ w(1) \ r(1)$





Run: $w(1) \ r(1) \ w(2) \ r(2) \ r(2) \ w(1) \ r(1) \ r(1)$

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic networks can solve (solving by reaching q) X-hard problems

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic networks can solve (solving by reaching q) X-hard problems

Membership: Safety checking in X implies non-atomic networks can not solve problems harder than X

How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

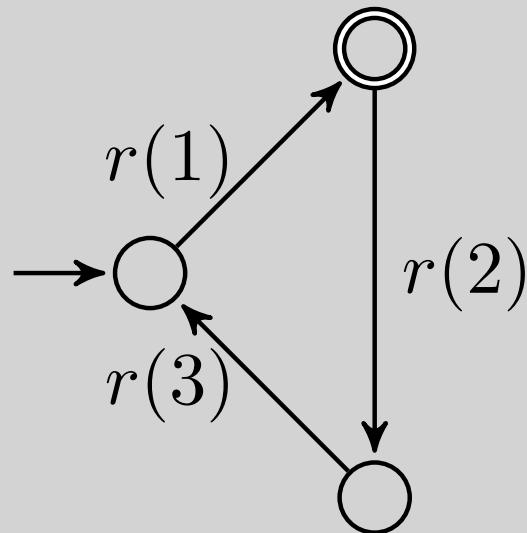
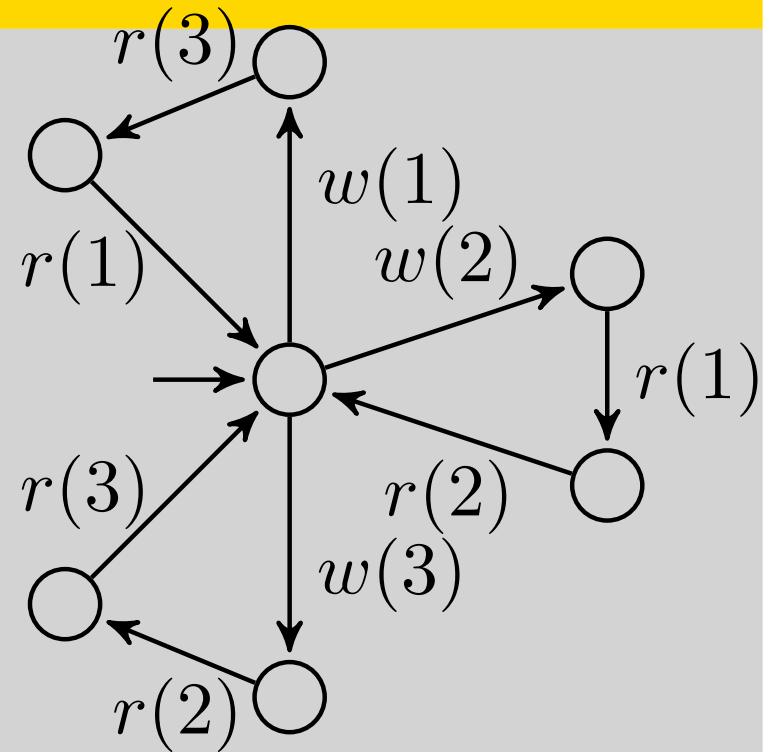
Hardness: X-hardness of safety checking implies non-atomic networks can solve (solving by reaching q) X-hard problems

Membership: Safety checking in X implies non-atomic networks can not solve problems harder than X

Today solving means repeatedly reaching q

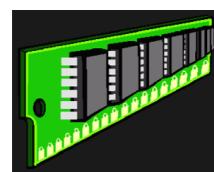
Parameterized model-checking

Given:



N copies

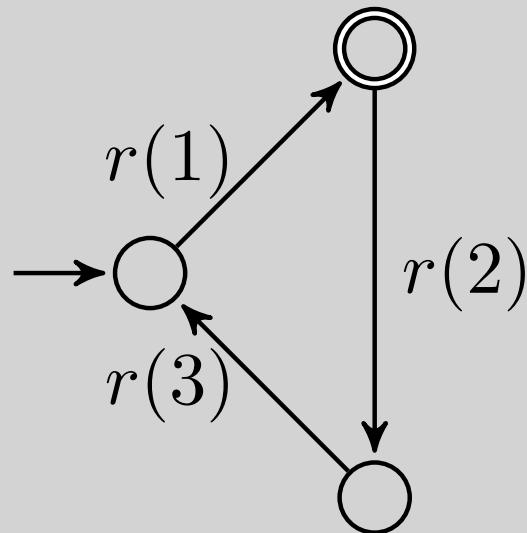
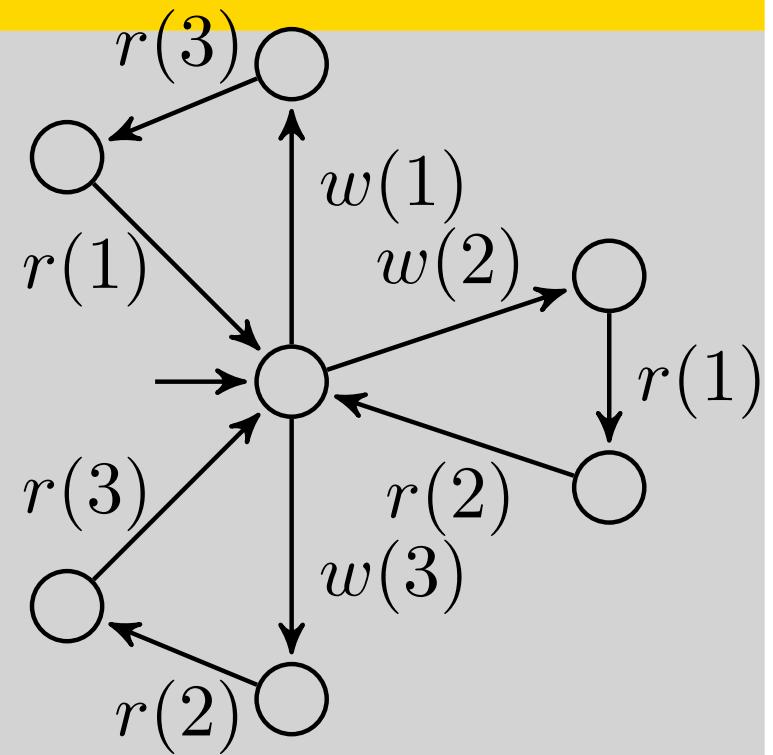
Is there N :



have an accepting run ?

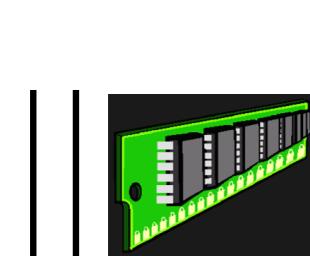
Parameterized model-checking

Given:



N copies

Is there N :



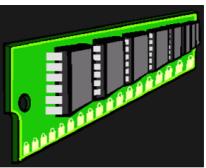
have an accepting run ?

Is there an **infinite** accepting run with **finitely** many processes?

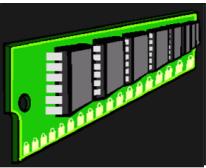
NP-complete

NP-complete

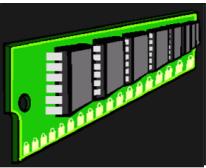
when all processes are given by finite state machine



$w(1)$ $r(1)$ $r(1)$ $w(2)$ $r(2)$ $w(1)$ $r(1)$ $r(1)$ $w(3)$ $r(3)$



$w(1)$ $r(1)$ $r(1)^{(1)}$ $w(2)$ $r(2)$ $w(1)^{(1)}$ $r(1)$ $r(1)$ $w(3)$ $r(3)$



$w(1) \ r(1) \ r(1) \ r(1) \ w(2) \ r(2) \ w(1) \ w(1) \ r(1) \ r(1) \ w(3) \ r(3)$

Copycat Lemma

$w(1)$

$r(2)$

$r(1)$

$r(3)$

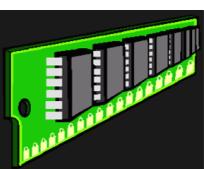
$r(1)$

$w(2)$

$r(1) \ w(3)$

$r(1)$

$w(1)$



$w(1) \ r(1) \ r(1) \ w(2) \ r(2) \ w(1) \ r(1) \ r(1) \ w(3) \ r(3)$

Copycat Lemma

$w(1)$

$r(2)$

$r(1)$

$r(3)$

$r(1)$

$w(2)$

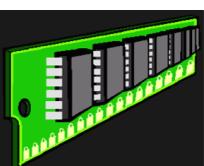
$r(1) \ w(3)$

$r(1)$

$w(1)$

$r(1)$

$w(1)$



$w(1) \ r(1) \ r(1) \ w(2) \ r(2) \ w(1) \ r(1) \ r(1) \ w(3) \ r(3)$

Copycat Lemma

$w(1)$

$r(2)$

$r(1)$

$r(3)$

$r(1)$

$w(2)$

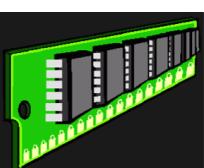
$r(1) \ w(3)$

$r(1)$

$w(1)$

$r(1)$

$w(1)$



$w(1)$

$r(1)$

$r(1)$

$w(2)$

$r(2)$

$w(1)$

$r(1)$

$r(1)$

$w(3)$

$r(3)$

$r(1)$

$w(1)$

Copycat Lemma

$w(1)$

$r(2)$

$r(1)$

$r(3)$

$r(1)$

$w(2)$

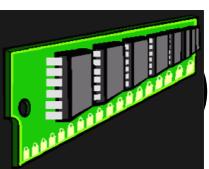
$r(1) \ w(3)$

$r(1)$

$w(1)$

$r(1)$

$w(1)$



$r(1) \ r(1) \ r(1) \ w(2) \ r(2) \ w(1) \ w(1) \ r(1) \ r(1) \ w(3) \ r(3)$

Copycat Lemma

$w(1)$

$r(2)$

$r(1)$

$r(3)$

$r(1)$

$w(2)$

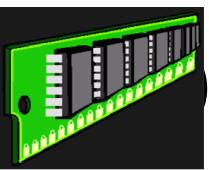
$r(1) \ w(3)$

$r(1)$

$w(1)$

$r(\{ \}^{\{ \}^{\{ \}^{\{ \}}})}$

$w(\{ \}^{\{ \}^{\{ \}^{\{ \}}})}$

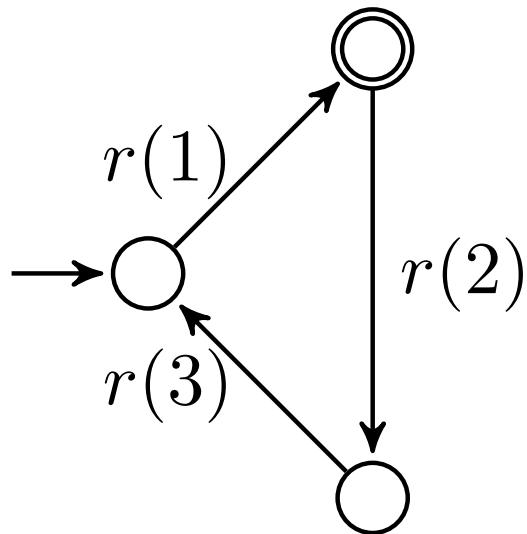
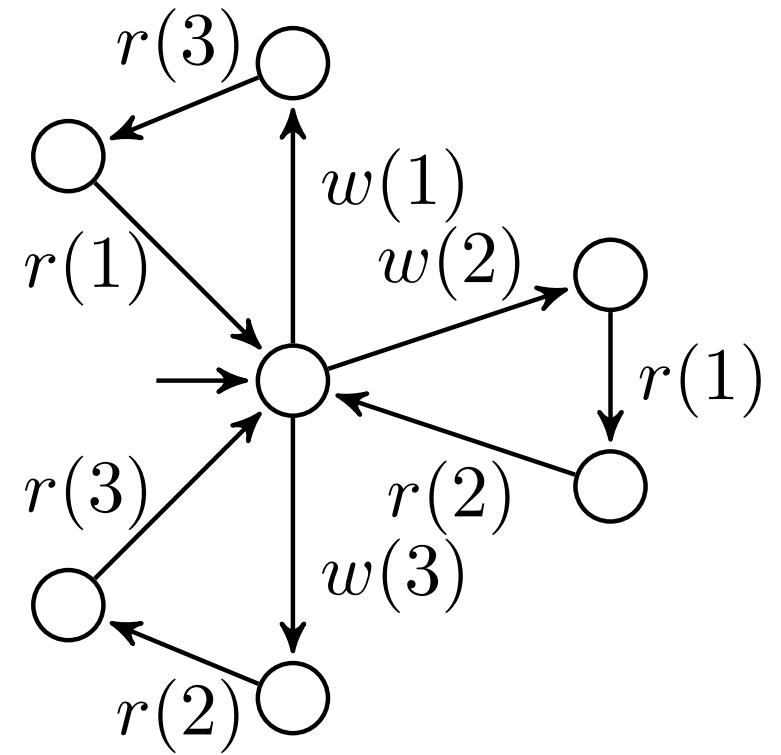


$r(1) \ r(1) \ r(1) \ r(1) \ r(2) \ r(2) \ w(1) \ r(1) \ r(1) \ w(3) \ r(3)$

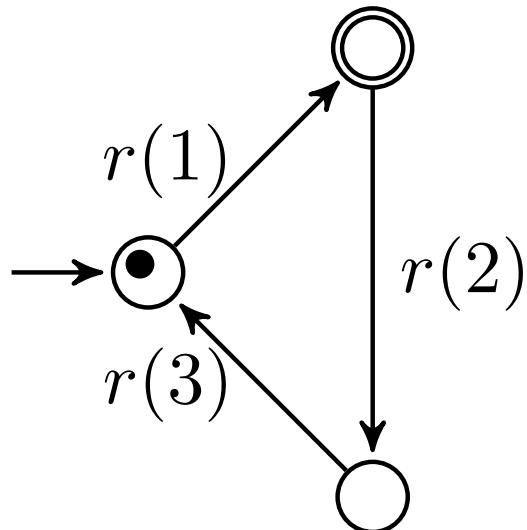
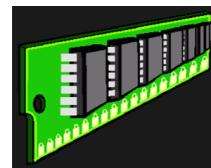
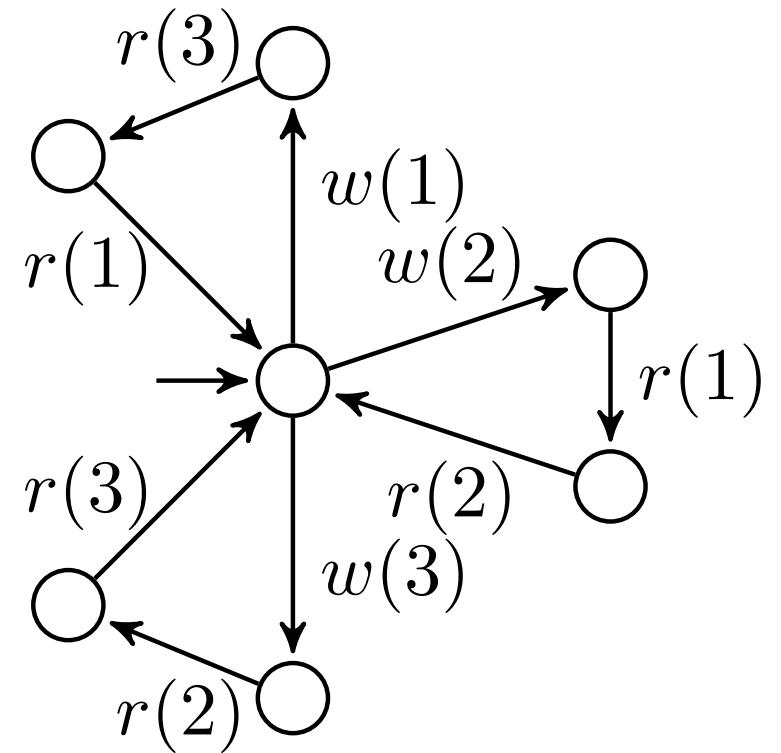
$r(1)$

$w(1)$

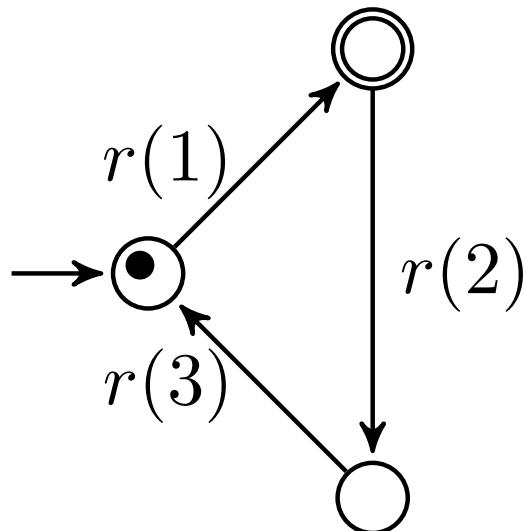
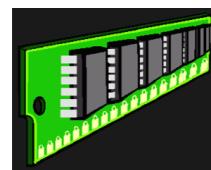
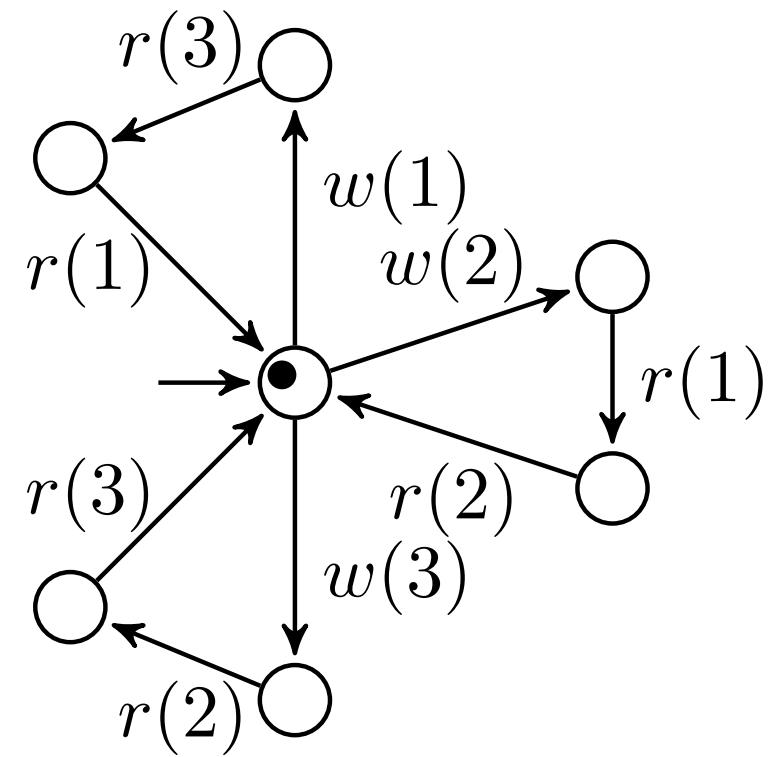
Finite abstraction



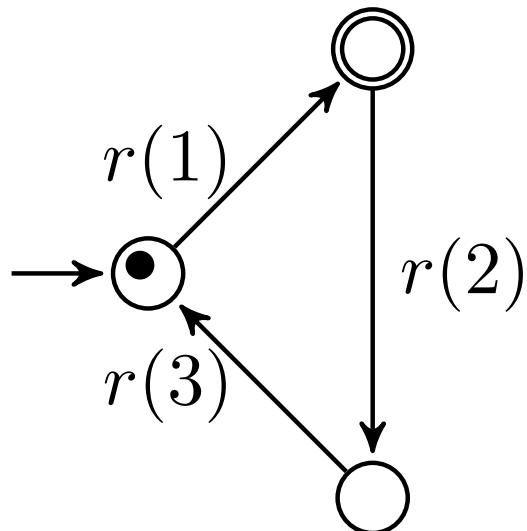
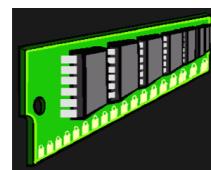
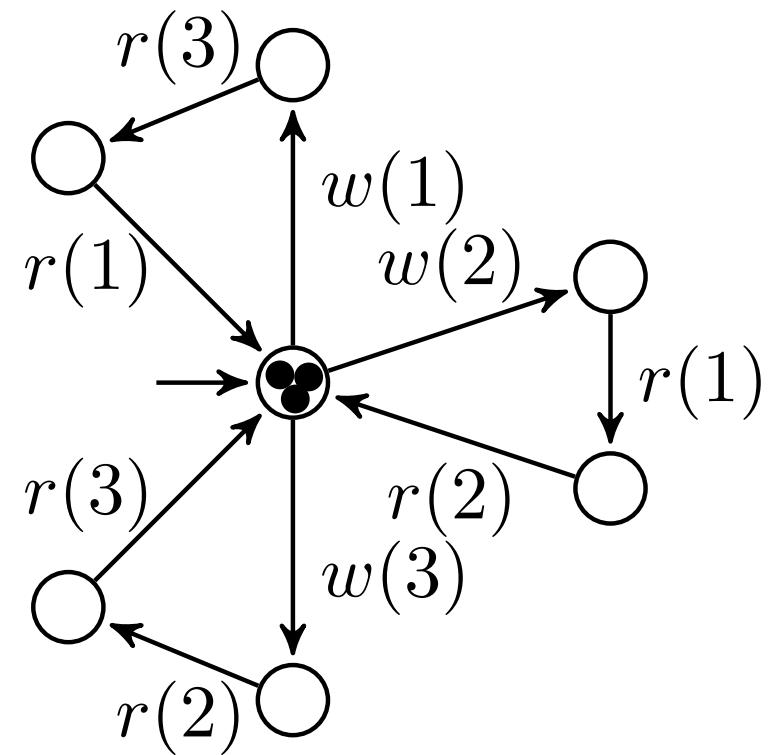
Finite abstraction



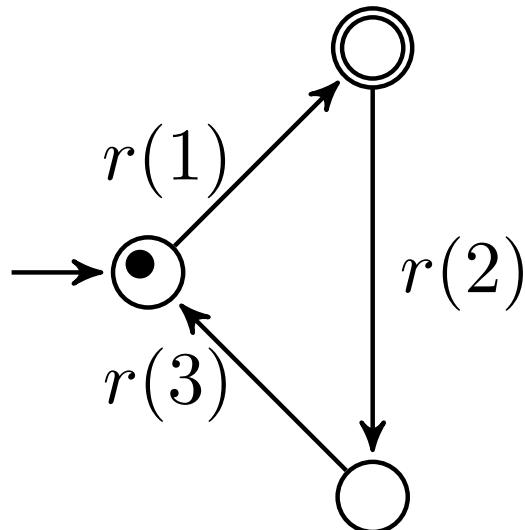
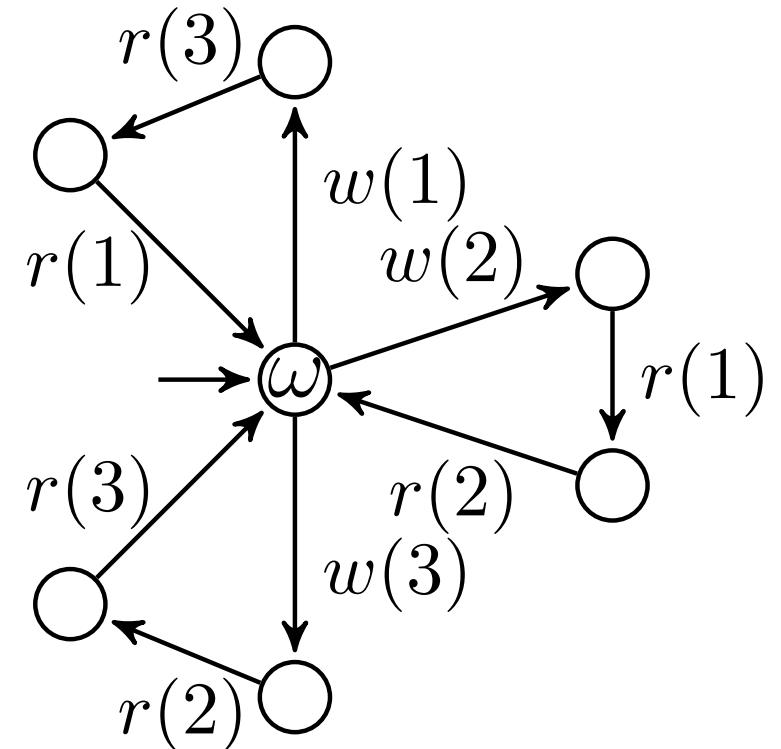
Finite abstraction



Finite abstraction

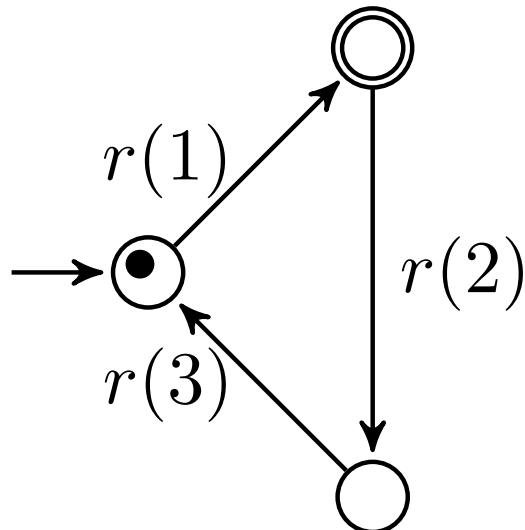
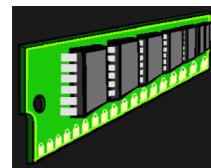
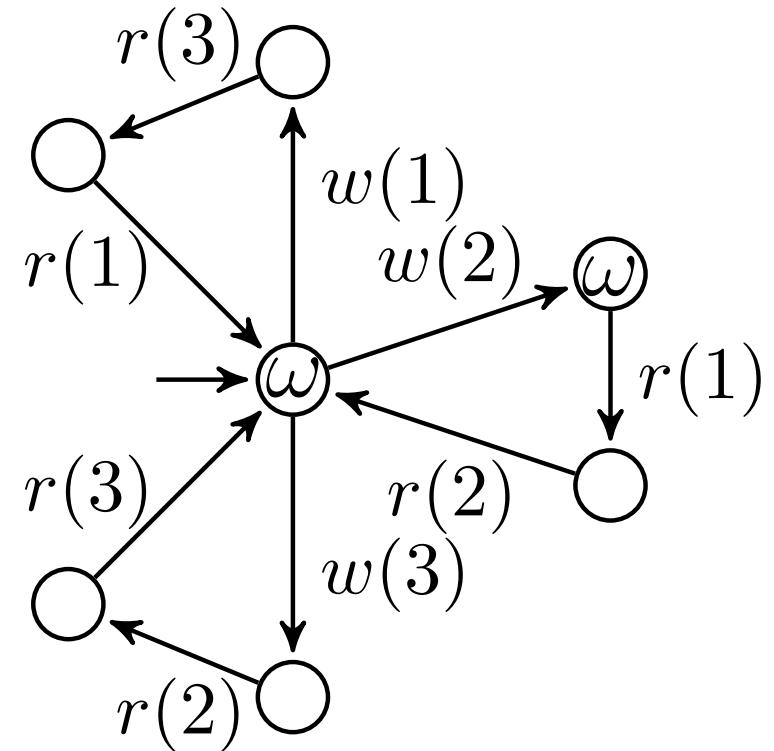


Finite abstraction



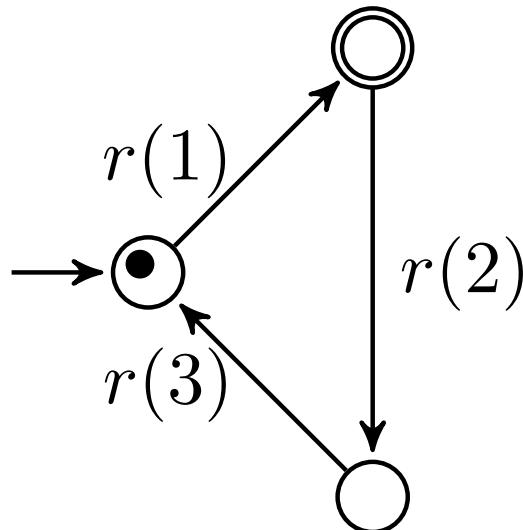
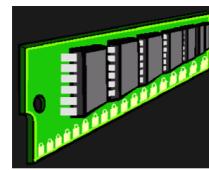
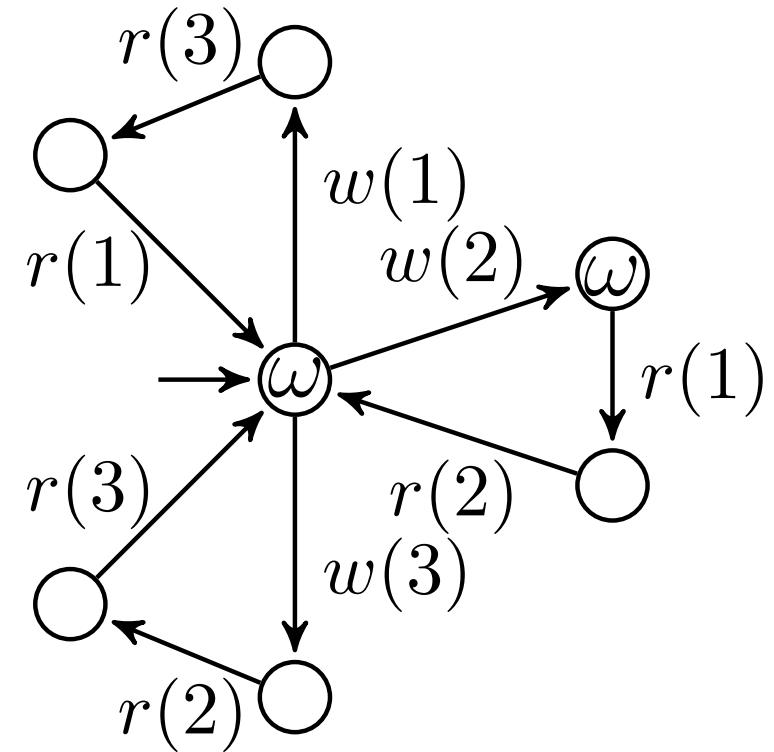
- Headcount of contributors not needed: $\bullet \rightarrow \omega$

Finite abstraction



- Headcount of contributors not needed: $\bullet \rightarrow \omega$
- Never delete an ω (Copycat lemma)

Finite abstraction



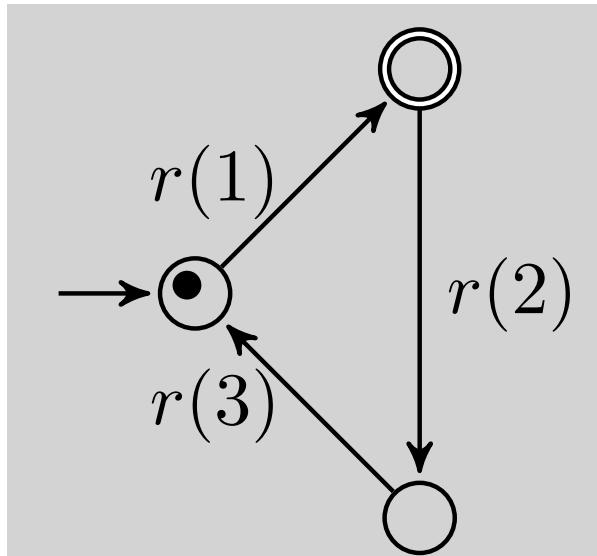
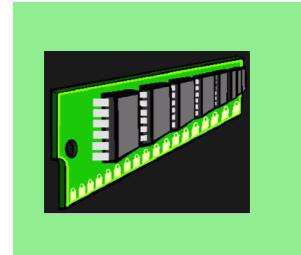
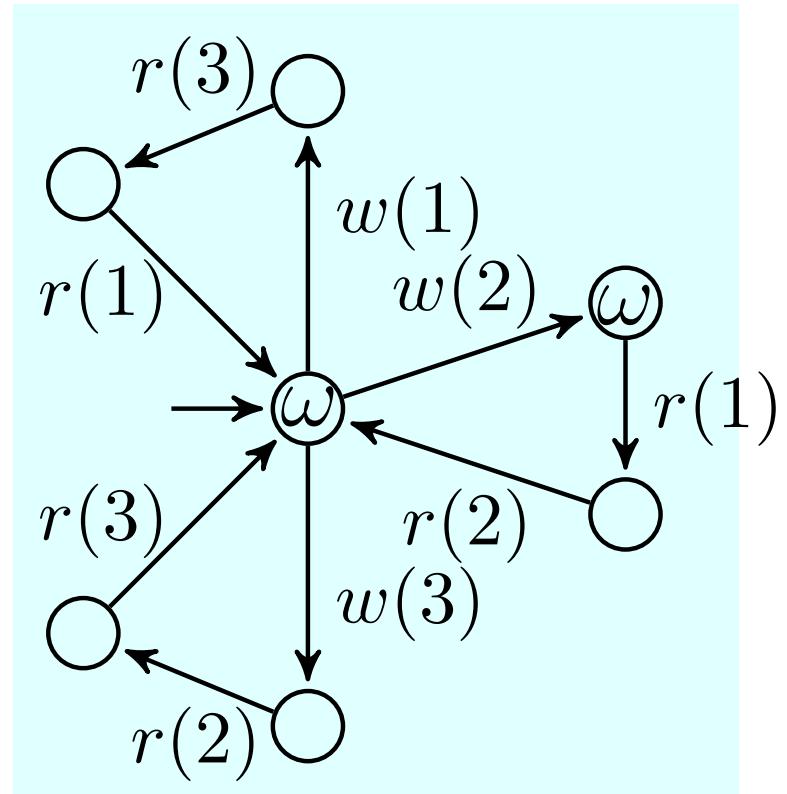
- Headcount of contributors not needed: $\bullet \rightarrow \omega$
- Never delete an ω (Copycat lemma)

Build a graph αTS whose nodes reads as:

\langle leader state , store value , { contribs states with ω } \rangle

edges are defined following leader or contributors moves

Finite abstraction



- Headcount of contributors not needed: $\bullet \rightarrow \omega$
- Never delete an ω (Copycat lemma)

Build a graph αTS whose nodes reads as:

\langle leader state , store value , { contribs states with ω } \rangle

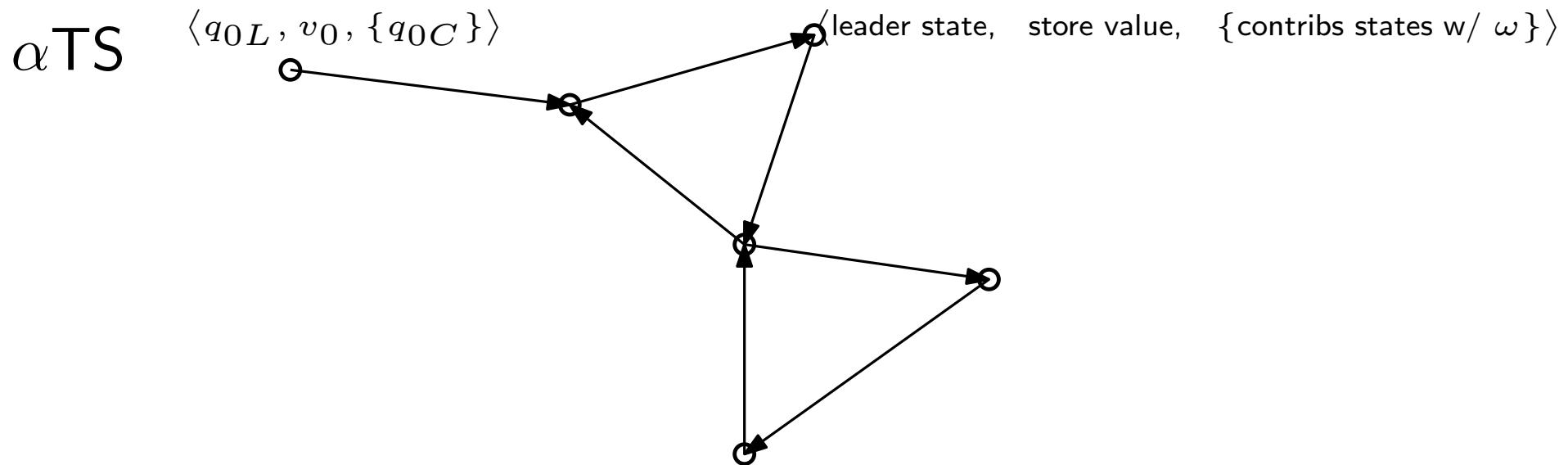
edges are defined following leader or contributors moves

Decision procedure

Is there an **infinite** accepting run with **finitely** many processes?

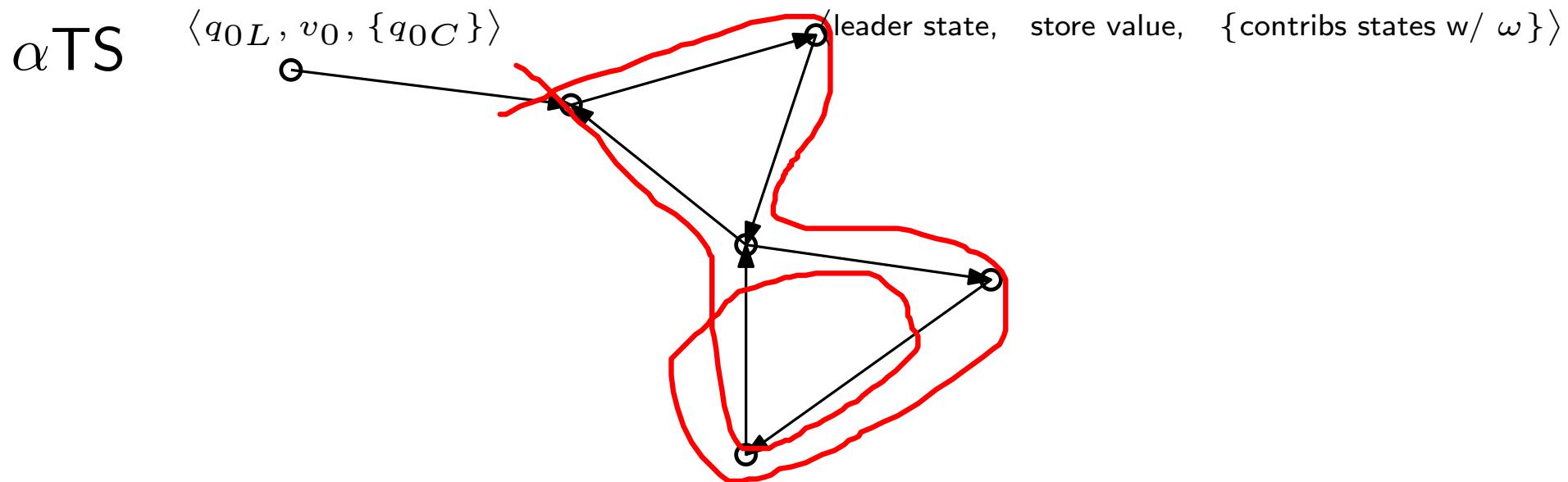
Decision procedure

Is there an **infinite** accepting run with **finitely** many processes?



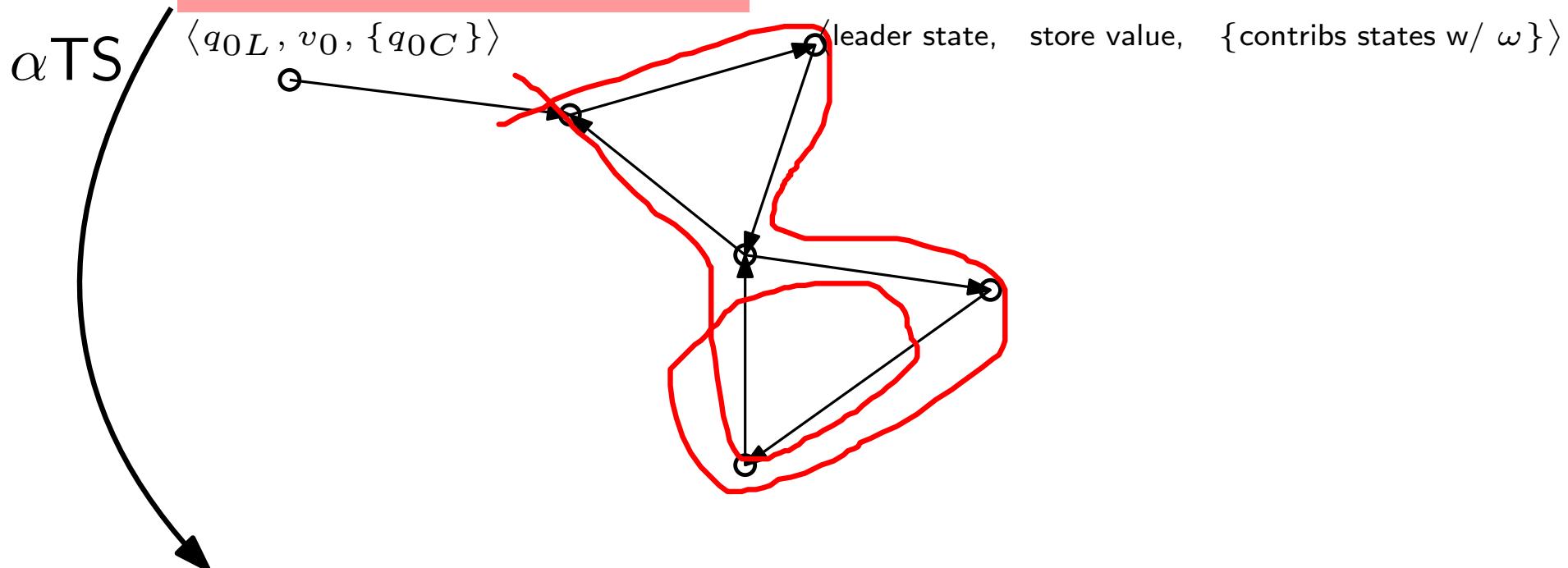
Decision procedure

Is there an **infinite** accepting run with **finitely** many processes?



Decision procedure

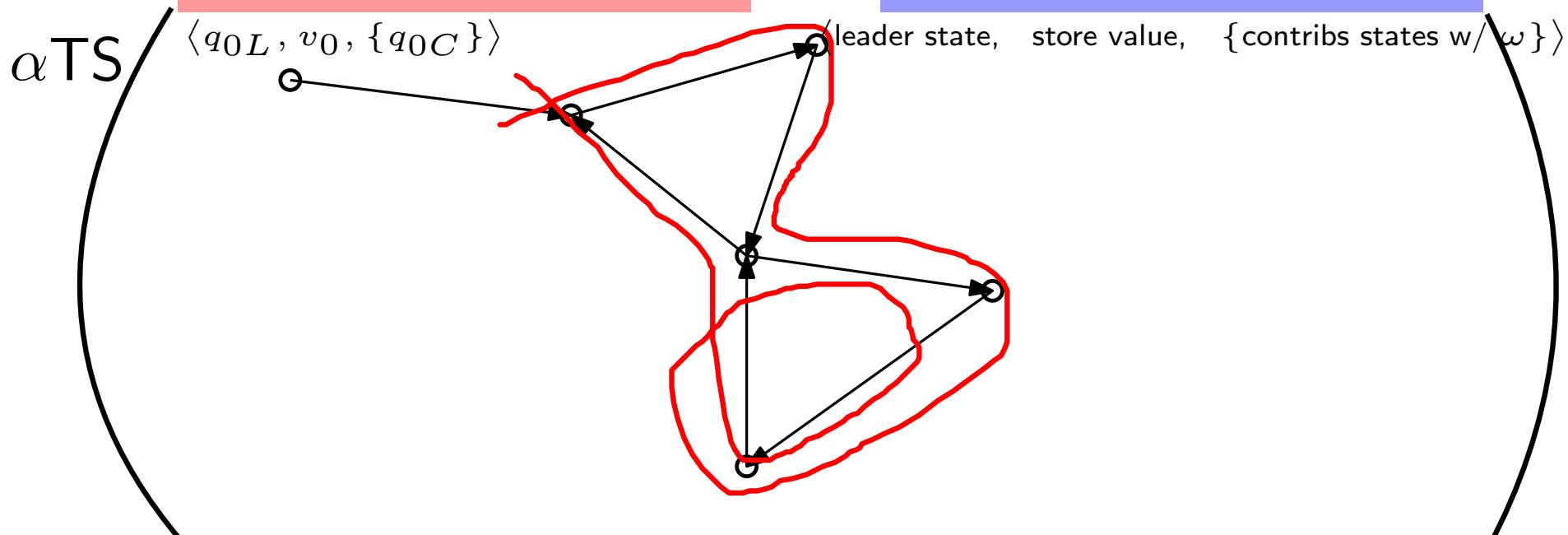
Is there an **infinite accepting run with finitely many processes**?



\exists reachable cycle \cap Buchi states $\neq \emptyset$

Decision procedure

Is there an **infinite accepting run with finitely many processes?**



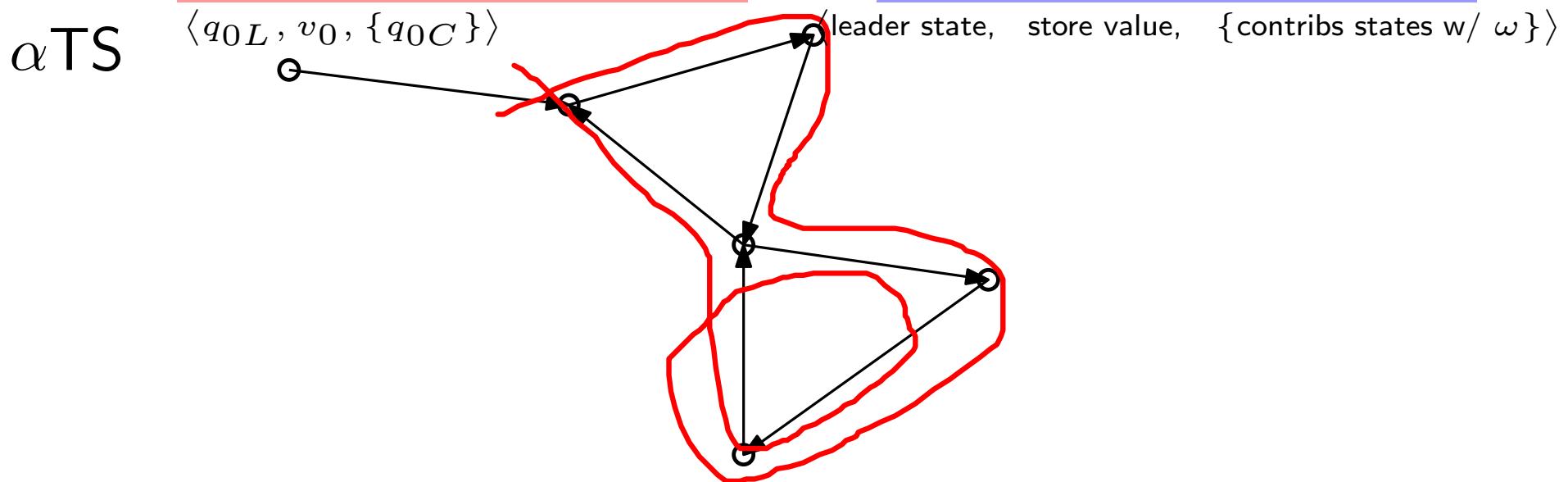
\exists reachable cycle \cap Buchi states $\neq \emptyset$

each contributor involved makes a roundtrip
iff

the cycle has $\vec{0}$ -weight

Decision procedure

Is there an **infinite accepting run with finitely many processes**?



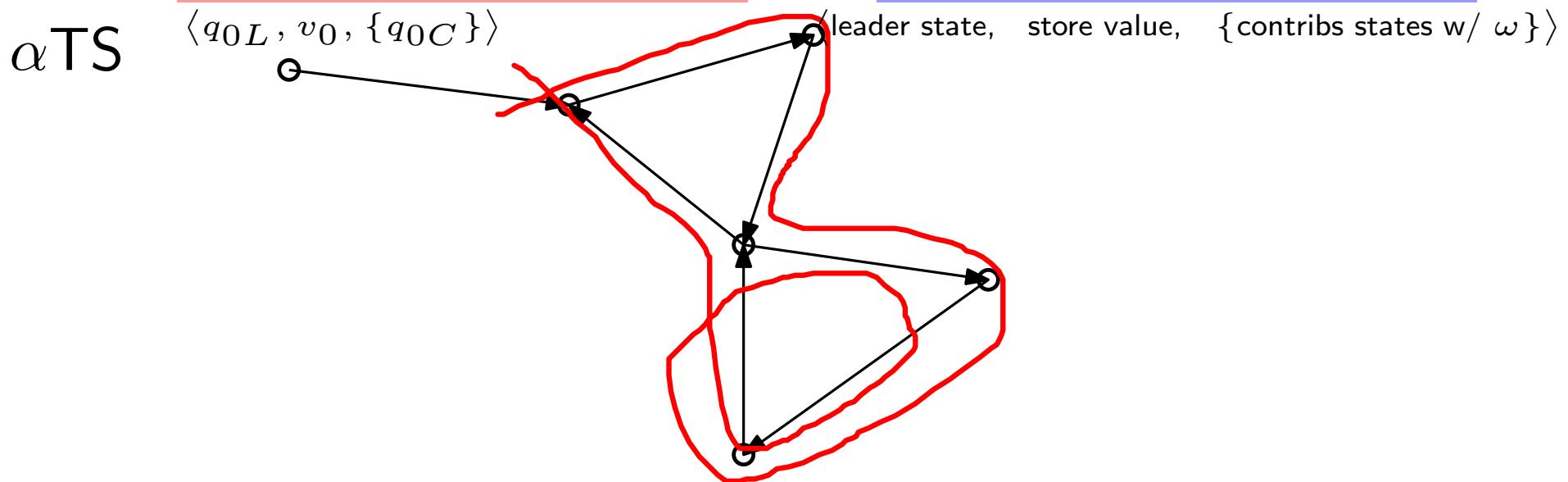
Has αTS a reachable **$\vec{0}$ -weight** cycle visiting Buchi states?

Satisfiability of an existential Presburger formula, in NP

$$\Omega^\circlearrowleft(x_{t_1}, \dots, x_{t_n}) \wedge \bigwedge_{q_c \in Q_c} \left(\sum_{tgt(t)=q_c} x_t = \sum_{src(t)=q_c} x_t \right)$$

Decision procedure

Is there an **infinite accepting run with finitely many processes**?



Has αTS a reachable **$\vec{0}$ -weight cycle visiting Buchi states**?

Satisfiability of an existential Presburger formula, in NP

$$\Omega^\circlearrowleft(x_{t_1}, \dots, x_{t_n}) \wedge \bigwedge_{q_c \in Q_c} \left(\sum_{tgt(t)=q_c} x_t = \sum_{src(t)=q_c} x_t \right)$$

Wake up!

Wake up!

I did a mistake

Wake up!

I did a mistake

This is not a polynomial!

Wake up!

I did a mistake

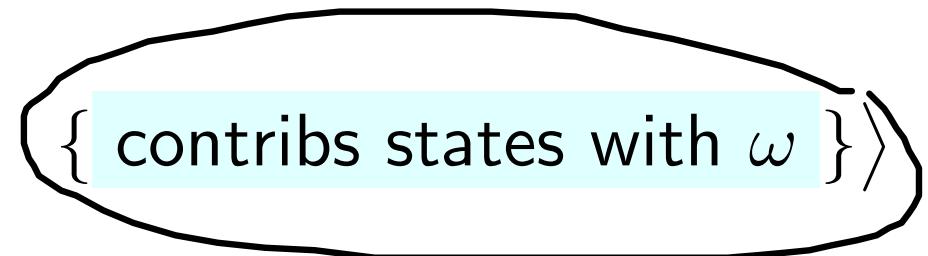
This is not a polynomial!

There are exponentially many nodes

⟨ leader state ,

store value ,

{ contribs states with ω }



Wake up!

I did a mistake

This is not a polynomial!

There are exponentially many nodes

\langle leader state , store value , { contribs states with ω } \rangle

Obs: along every path of α TS, the states with ω can only grow

Step 1: compute the subgraph for a guessed growing sequence

Step 2: compute the formula and check for SAT

The NP membership in perspective

The **non-parameterized** variant is PSPACE-hard [Kozen,FOCS'77]

Arbitrarily many processes yields a **noisy** channel and the problem gets easier

The results show that **noise** can **not** be cancelled out

The NP membership in perspective

The **non-parameterized** variant is PSPACE-hard [Kozen,FOCS'77]

Arbitrarily many processes yields a **noisy** channel and the problem gets easier

The results show that **noise** can **not** be cancelled out

What if we give processes some auxiliary memory?

Processes + stacks

Processes + stacks

- To the **leader** only:
remains in NP (proof generalization)

Processes + stacks

- To the **leader** only:
remains in NP (proof generalization)
- To both the **leader** and **contributor**:
in NEXPTIME by reduction to the previous case

Processes + stacks

- To the **leader** only:

- remains in NP (proof generalization)

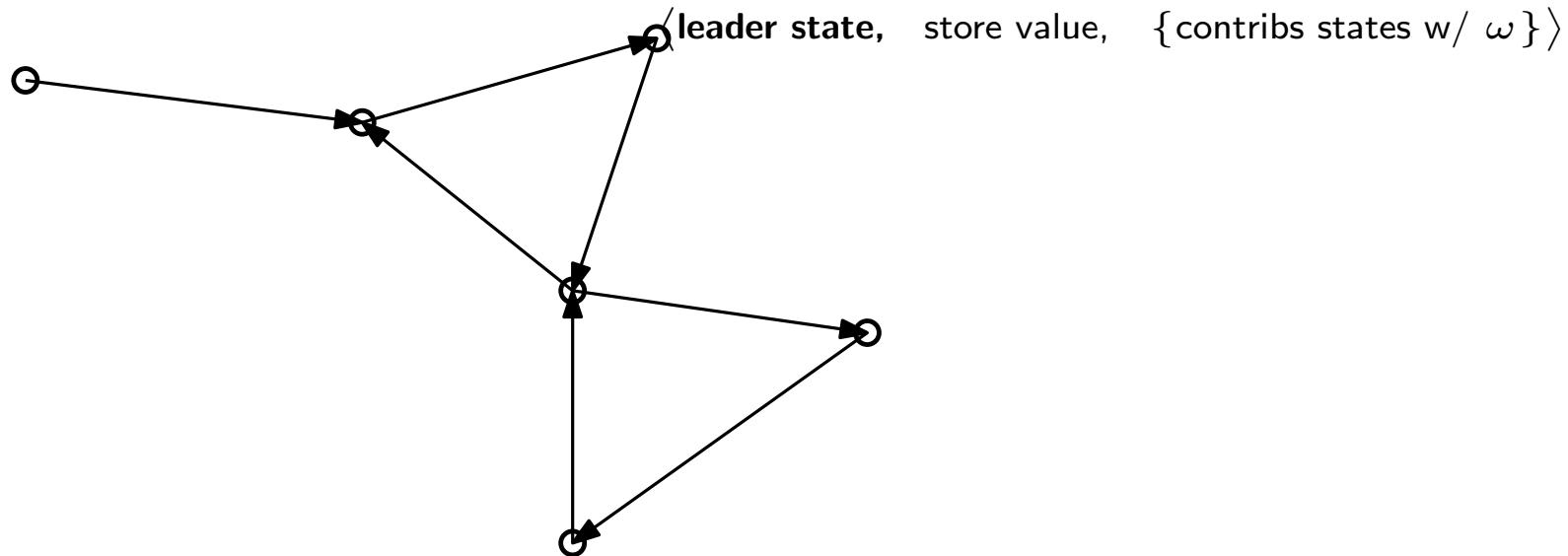
- To both the **leader** and **contributor**:

- in NEXPTIME by reduction to the previous case

Compare with the undecidability result for **fixed** number of processes **all** of them with stack

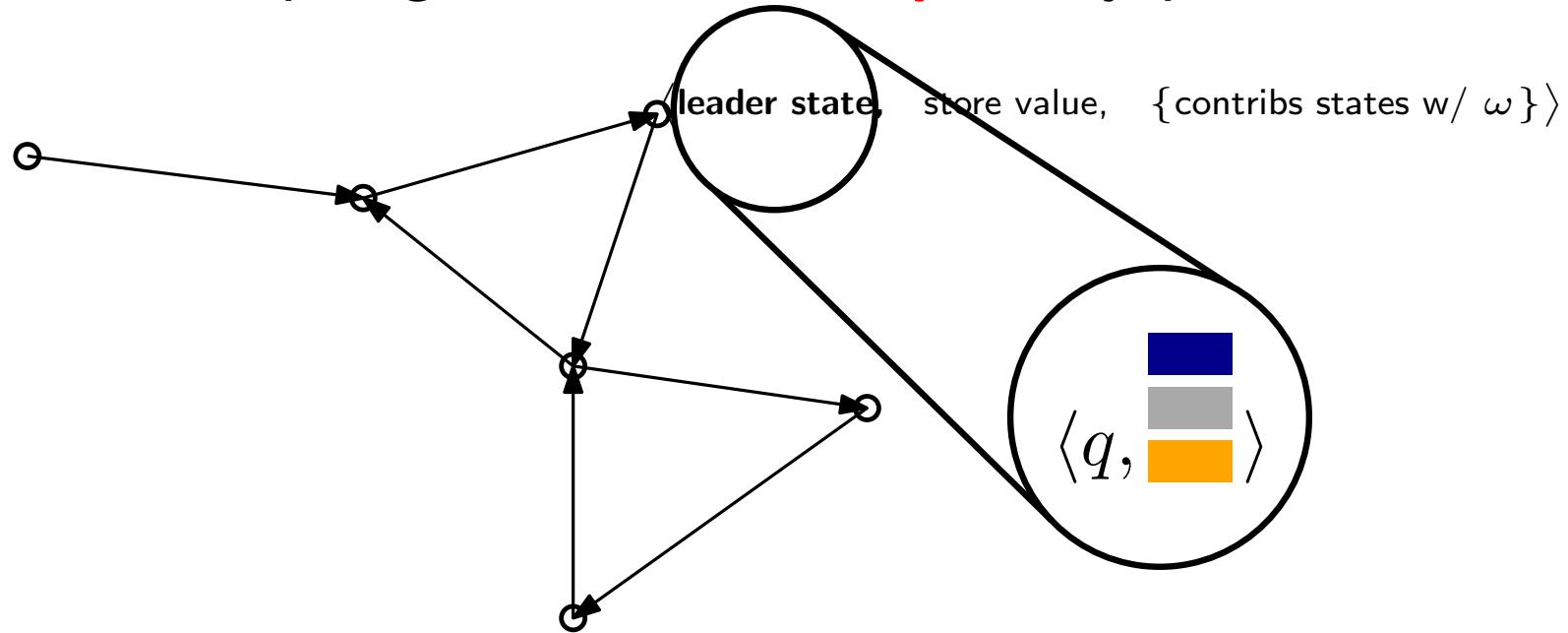
Only the leader has a stack

Is there an **infinite** accepting run with **finitely** many processes?



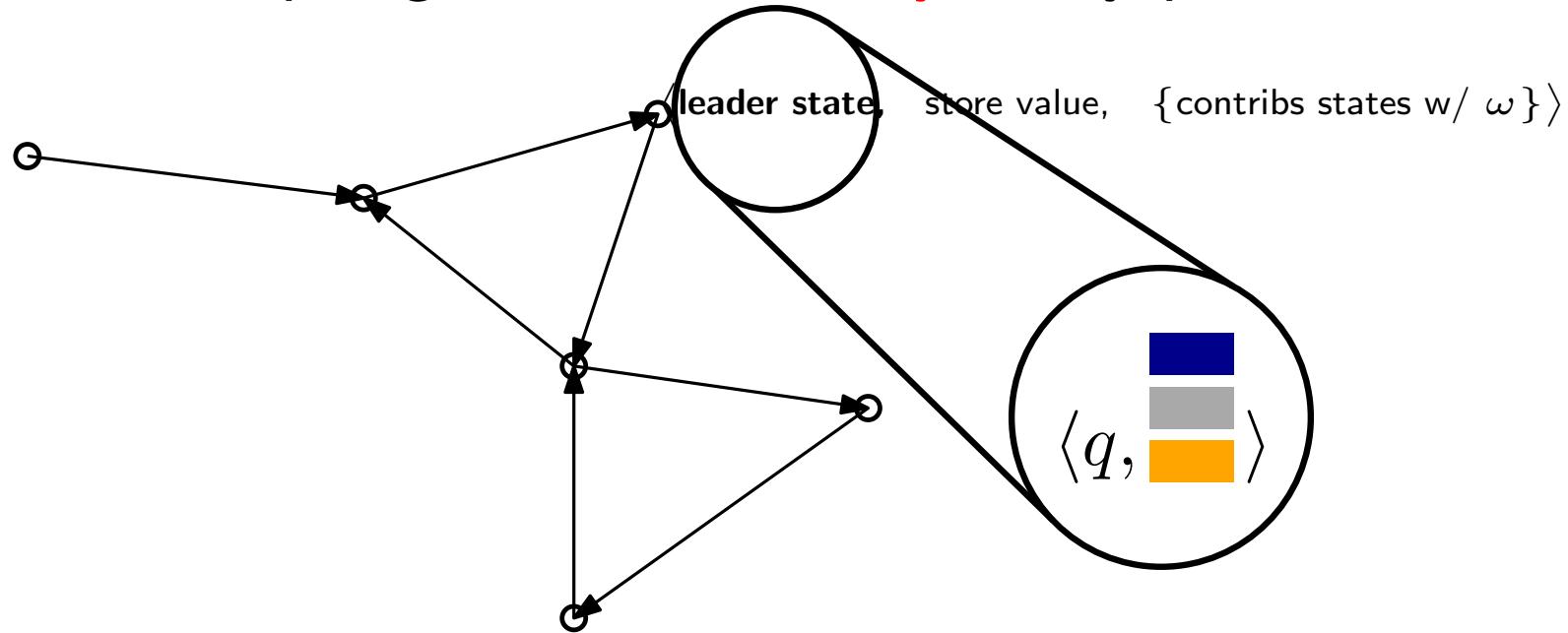
Only the leader has a stack

Is there an **infinite** accepting run with **finitely** many processes?



Only the leader has a stack

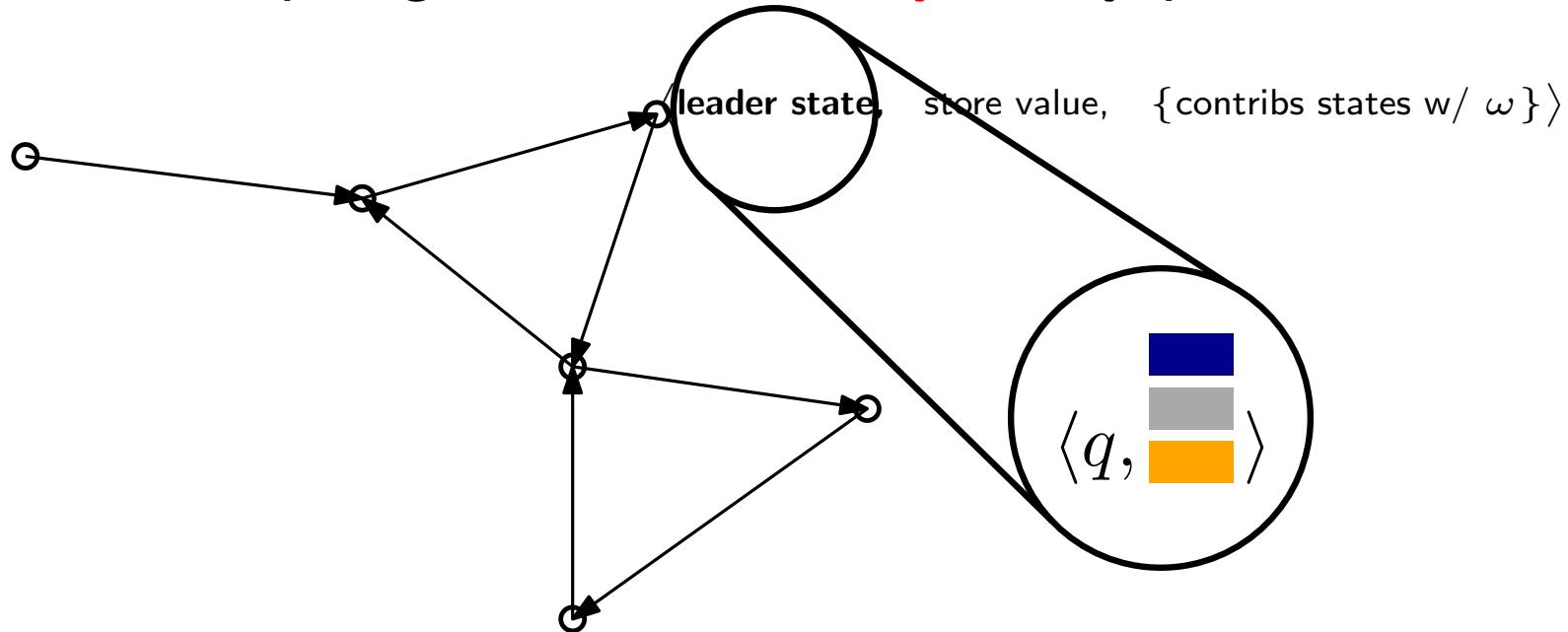
Is there an **infinite** accepting run with **finitely** many processes?



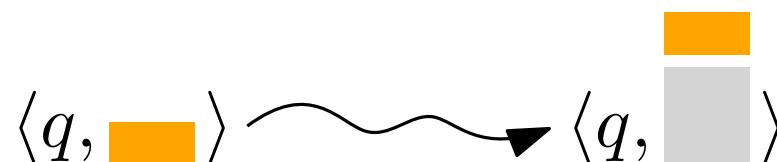
Has α TS a reachable $\vec{0}$ -weight cycle visiting Buchi states ?

Only the leader has a stack

Is there an **infinite** accepting run with **finitely** many processes?

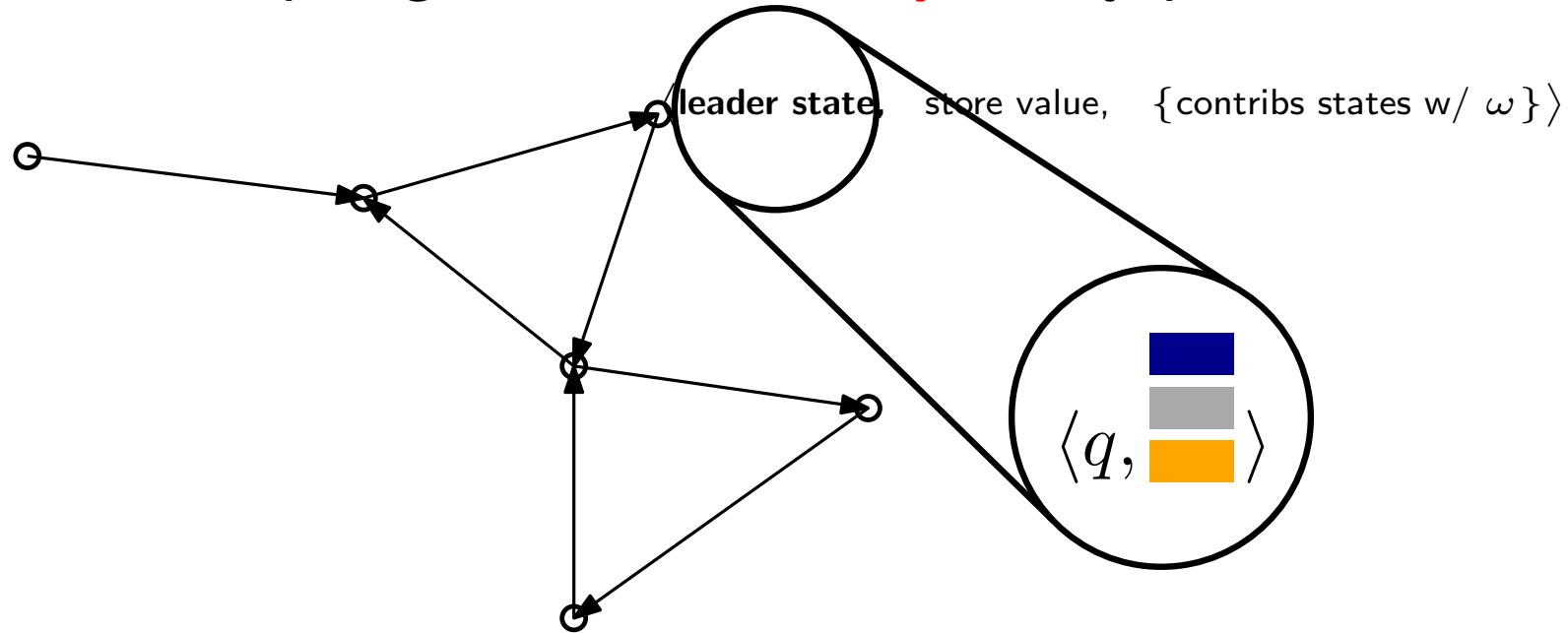


Has α TS a reachable $\vec{0}$ -weight cycle visiting Buchi states?

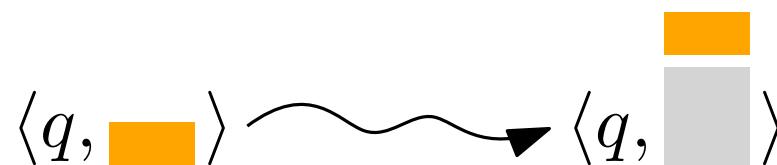


Only the leader has a stack

Is there an **infinite** accepting run with **finitely** many processes?



Has α TS a reachable $\vec{0}$ -weight cycle visiting Buchi states?



$$\Omega^\circ(x_{t_1}, \dots, x_{t_n}) \wedge \bigwedge_{q_c \in Q_c} \left(\sum_{tgt(t)=q_c} x_t = \sum_{src(t)=q_c} x_t \right)$$

Everybody has a stack

Is there an **infinite** accepting run with **finitely** many processes?

Everybody has a stack

Is there an **infinite** accepting run with **finitely** many processes?

NEXPTIME

by reduction to the “only the leader has a stack” case

Everybody has a stack

Is there an **infinite** accepting run with **finitely** many processes?

NEXPTIME

by reduction to the “only the leader has a stack” case

Compare with the undecidability result for **fixed** number of processes **all** of them with stack

Everybody has a stack

Is there an **infinite** accepting run with **finitely** many processes?

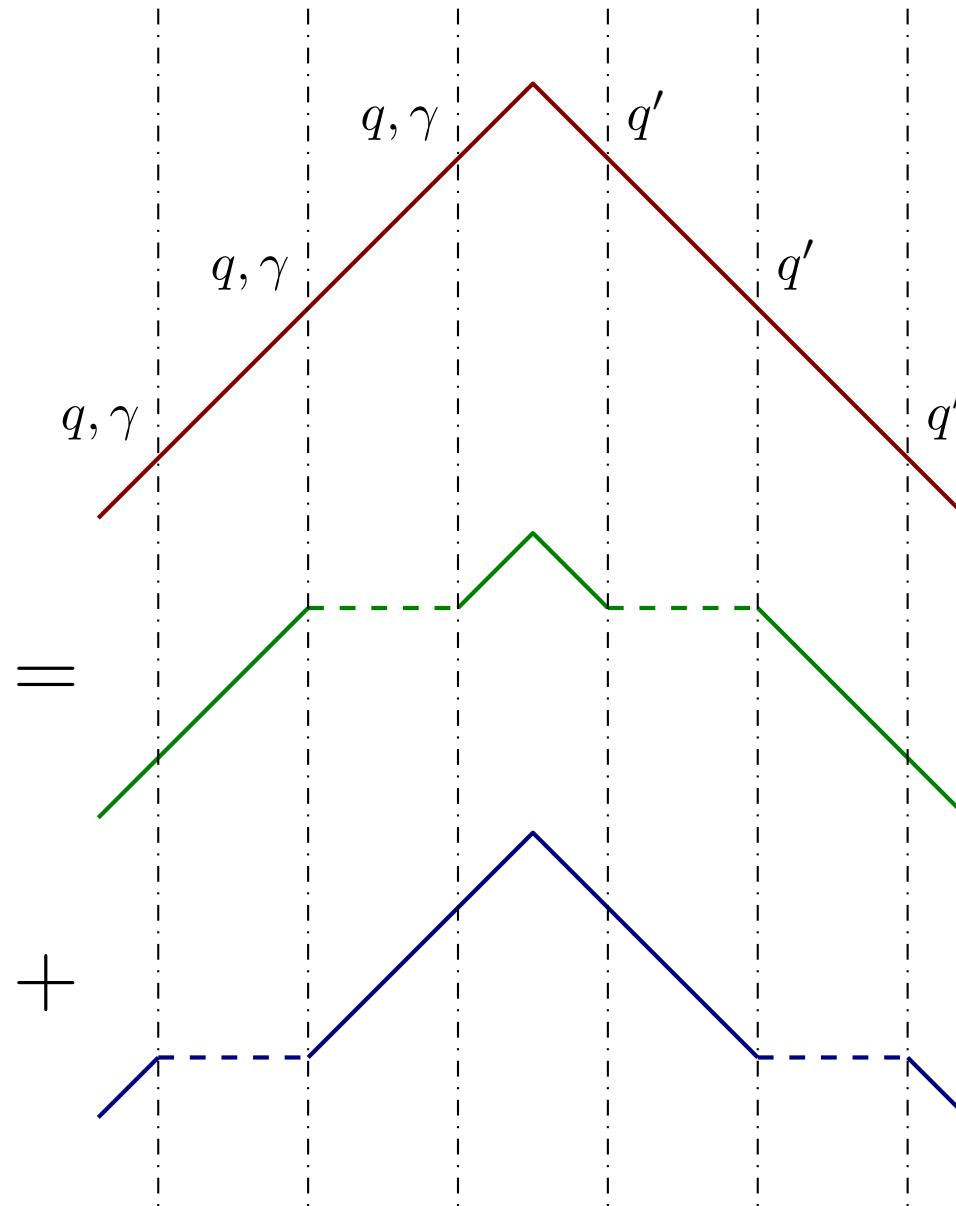
NEXPTIME

by reduction to the “only the leader has a stack” case

Compare with the undecidability result for **fixed** number of processes **all** of them with stack

Proof of correctness is not simple or easy

Replace a contributor run by **more** runs using “less memory”



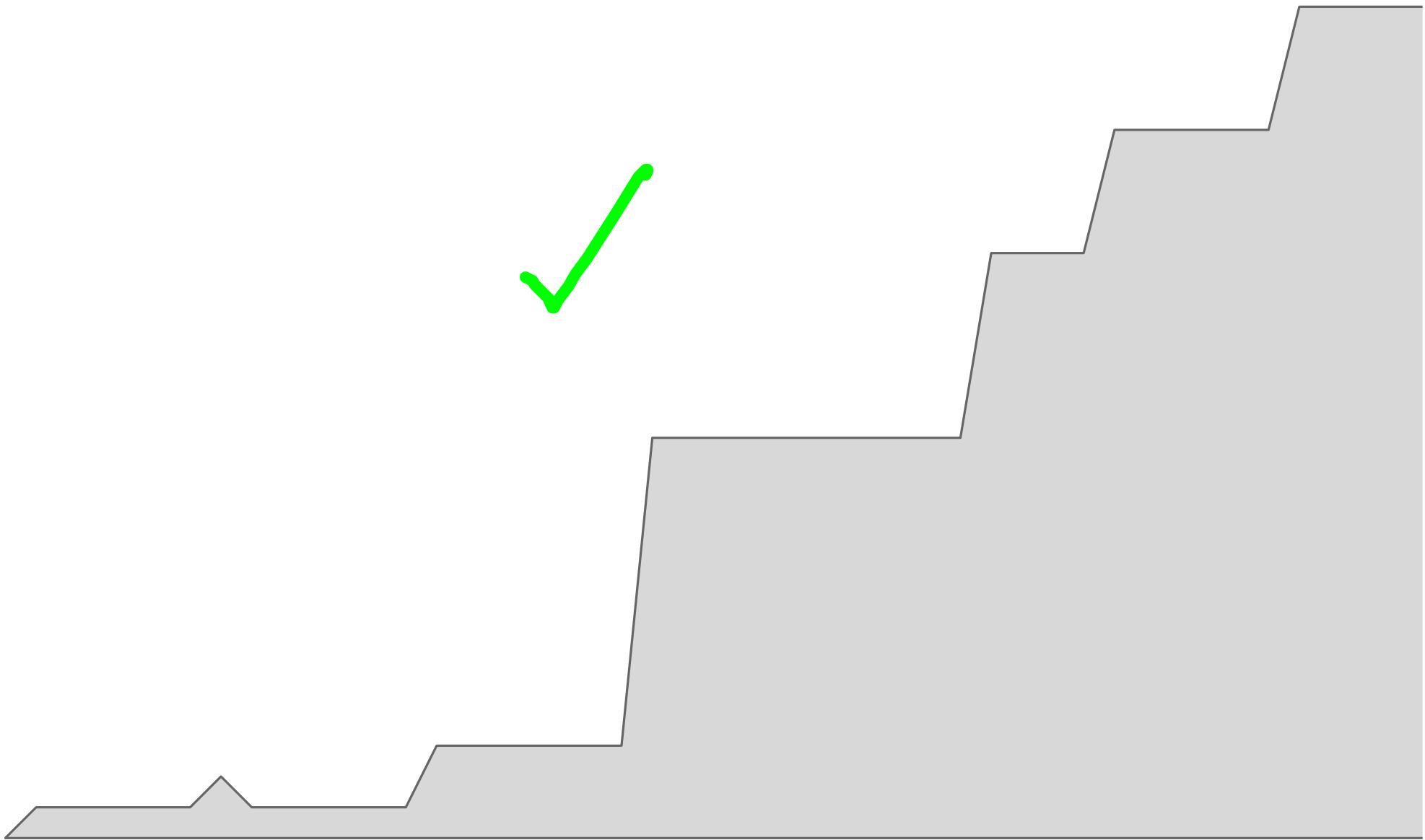
Less memory = retrieve shallow stack frames only

Less memory = retrieve shallow stack frames only

► Examples

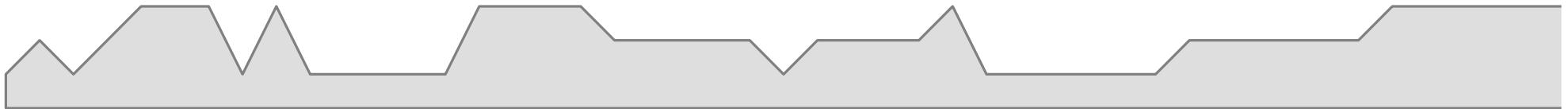
Less memory = retrieve shallow stack frames only

► Examples



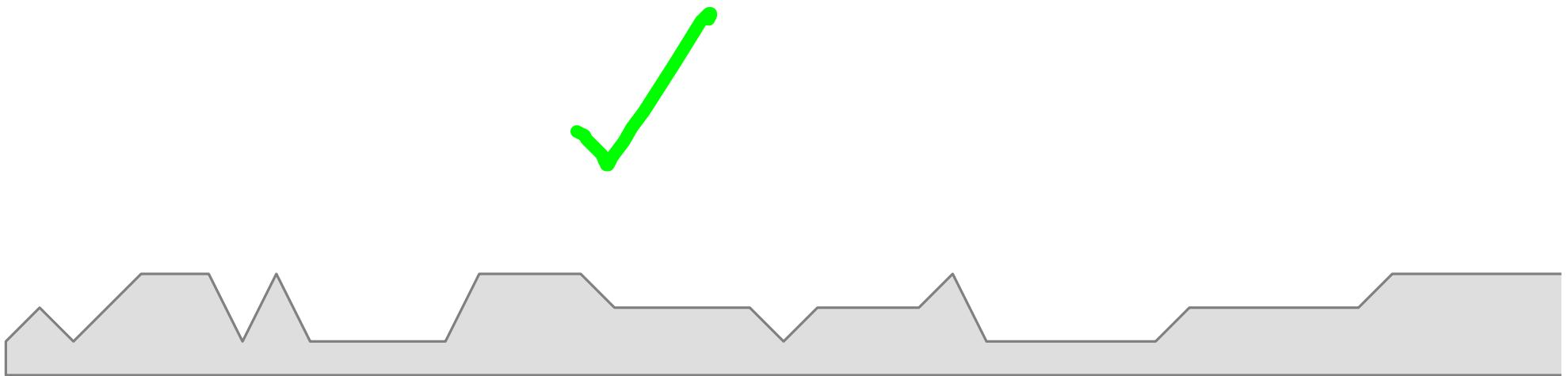
Less memory = retrieve shallow stack frames only

► Examples



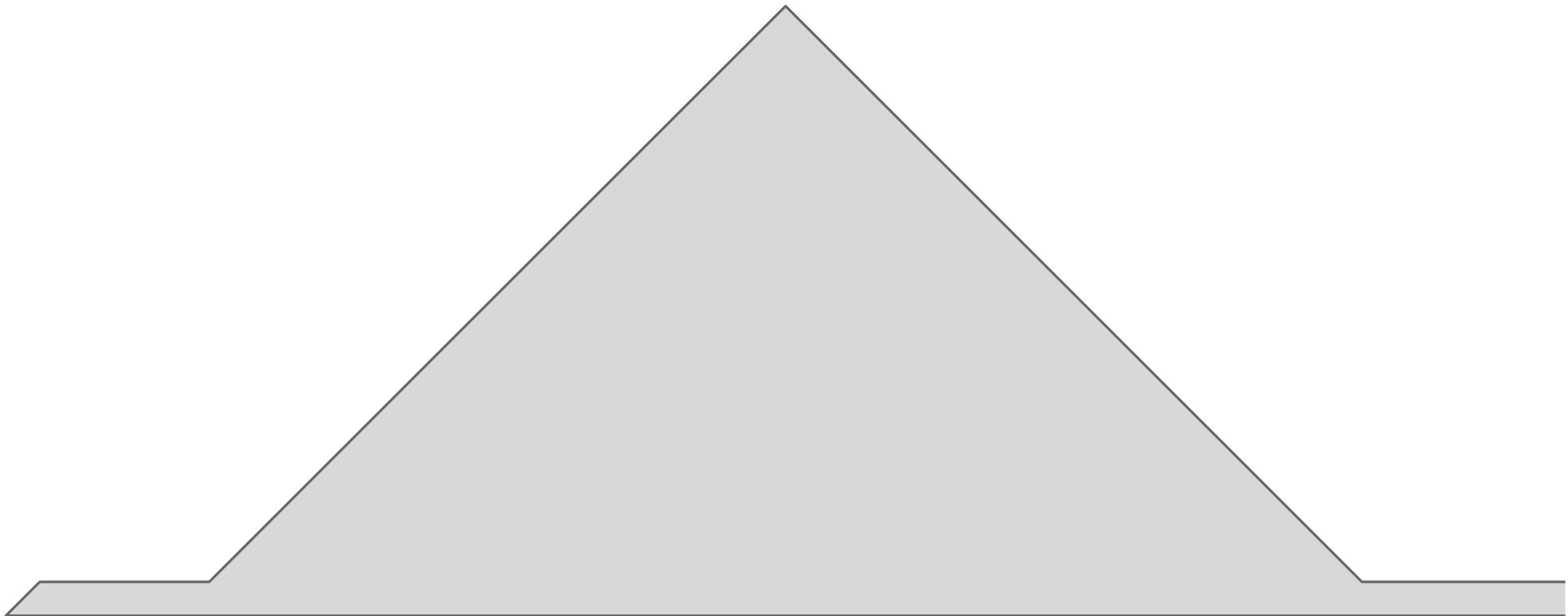
Less memory = retrieve shallow stack frames only

► Examples



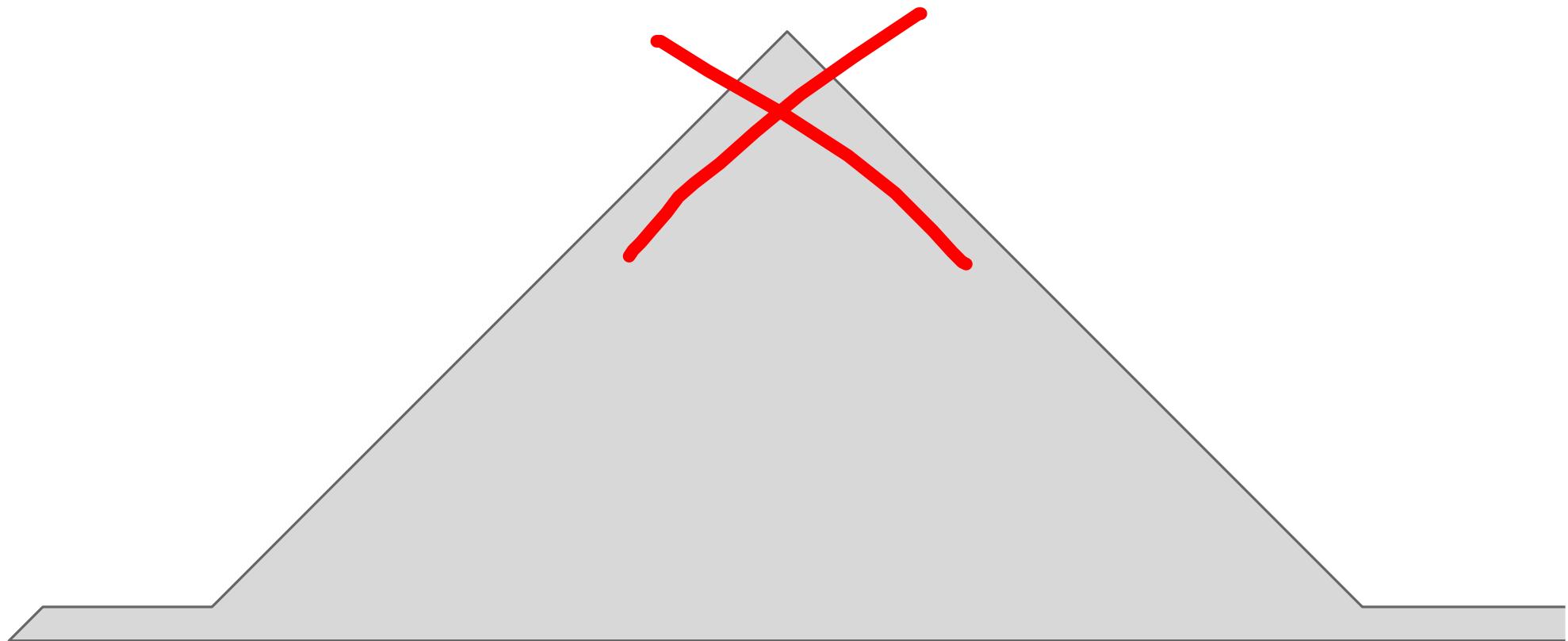
Less memory = retrieve shallow stack frames only

► Examples



Less memory = retrieve shallow stack frames only

► Examples



Less memory = retrieve shallow stack frames only

- having each contrib keeping track of its topmost $O(n^3)$ frames suffice
- Memory is now bounded and hard-encoded into the states
- Fall back onto the “only the leader has a stack” case

Conclusions

Safety checking (CAV'13)

		FSM	PDM
FSM	CONP-C	CONP-C	
PDM	CONP-C	PSPACE-C	

Liveness checking (CAV'15)

		FSM	PDM
FSM	NP-C	NP-C	
PDM		PSPACE-hard ? NEXPTIME	

Liveness is **as easy as** safety

► Contrast: broadcast protocols

Parameterized verification is **easier** than non-parameterized

► Contrast: n finite state machines

Adding memory leads to **harder**, but not undecidable, problems

► Contrast: fixed pushdown systems

Conclusions

Safety checking (CAV'13)

		FSM	PDM
FSM	CONP-C	CONP-C	
PDM	CONP-C	PSPACE-C	

Liveness checking (CAV'15)

		FSM	PDM
FSM	NP-C	NP-C	
PDM		PSPACE-hard ? NEXPTIME	

Liveness is **as easy as** safety

► Contrast: broadcast protocols

Parameterized verification is **easier** than non-parameterized

► Contrast: n finite state machines

Adding memory leads to **harder**, but not undecidable, problems

► Contrast: fixed pushdown systems