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What can such network compute?
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How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching ¢) X-hard problems

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

Today solving means repeatedly reaching q
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Finite abstraction
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Decision procedure

<q0L , V0> L90C }> leader state, store value, {contribs states w/ w}>
aTS

Has o TS a reachable

Satisfibility of an existential Presburger formula, in NP

) Ao (S0 = S t)

Parikh Image for finite state automaton [Seidl et al., ICALP’04]
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There are exponentially many nodes

~—_
< leader state , store value , \{ contribs states with wﬁ

Obs: along every path of aTS, the states with w can only grow

Step 1: compute the subgraph for a guessed growing sequence
Step 2: compute the formula and check for SAT
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Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

What if we give processes some auxiliary memory?
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Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

Qe value, {contribs states w/ w})
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Parikh Image for context-free grammars [Seidl et al., CADE’'05][Esparza, Fun. Informatica’97]
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Everybody has a stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME

by reduction to the “only the leader has a stack”™ case

Compare with the undecidability result for fixed number of
processes all of them with stack

Proof of correctness is not simple or easy
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Replace a contributor run by more runs using
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Less memory = retrieve shallow stack frames only

e having each contrib keeping track of its topmost O(n?)
frames suffice

e Memory is now bounded and hard-encoded into the states

e Fall back onto the “only the leader has a stack™ case
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