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What can such network compute?
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How much can non-atomic networks compute?

Verification reveals what non-atomic networks can(not) do

Membership: Safety checking in X implies non-atomic
networks can not solve problems harder than X

Today solving means repeatedly reaching q

Hardness: X-hardness of safety checking implies non-atomic
networks can solve (solving by reaching q) X-hard problems
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Is there an infinite accepting run with finitely many processes?
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Decision procedure

Is there an infinite accepting run with finitely many processes?

each contributor involved makes a roundtrip
iff

the cycle has ~0-weight

∃ reachable cycle ∩ Buchi states 6= ∅

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉
αTS
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Decision procedure

Is there an infinite accepting run with finitely many processes?

Has αTS a reachable ~0-weight cycle visiting Buchi states ?⇒
Satisfibility of an existential Presburger formula, in NP

〈
leader state, store value, {contribs states w/ ω}

〉〈
q0L, v0, {q0C}

〉

Ω�(xt1 , . . . , xtn) ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
Parikh Image for finite state automaton [Seidl et al., ICALP’04]

αTS
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Wake up!

〈
leader state , store value , { contribs states with ω }

〉
Obs: along every path of αTS, the states with ω can only grow

Step 1: compute the subgraph for a guessed growing sequence

Step 2: compute the formula and check for SAT

I did a mistake

This is not a polynomial!

There are exponentially many nodes
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The NP membership in perspective

Arbitrarily many processes yields a noisy channel and the
problem gets easier

The results show that noise can not be cancelled out

The non-parameterized variant is PSPACE-hard [Kozen,FOCS’77]

What if we give processes some auxiliary memory?
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Only the leader has a stack

Is there an infinite accepting run with finitely many processes?

〈
leader state, store value, {contribs states w/ ω}

〉

〈q, 〉

Ω�(xt1 , . . . , xtn) ∧
∧

qc∈Qc

(∑
tgt(t)=qc

xt =
∑

src(t)=qc
xt

)
Parikh Image for context-free grammars [Seidl et al., CADE’05][Esparza, Fun. Informatica’97]

Has αTS a reachable ~0-weight cycle visiting Buchi states ?

Where cycle means

〈q, 〉 〈q, 〉
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Everybody has a stack

Compare with the undecidability result for fixed number of
processes all of them with stack

Is there an infinite accepting run with finitely many processes?

NEXPTIME
by reduction to the “only the leader has a stack” case

Proof of correctness is not simple or easy
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Replace a contributor run by more runs using “less memory”
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Less memory = retrieve shallow stack frames only

• having each contrib keeping track of its topmost O(n3)
frames suffice

• Memory is now bounded and hard-encoded into the states

• Fall back onto the “only the leader has a stack” case
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