
Lazily Analysing the Result of Abstracting
“Counting Processes”

Ahmed Rezine
joint work with: Zeinab Ganjei, Petru Eles, Zebo Peng

Linköping University, Sweden

Madrid 2015



Table of Contents

Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction



Goal

Verify safety of multi-threaded programs:

I involving an arbitrary number of threads (i.e. parameterized)

I synchronizing using “process counting variables”, barriers,
semaphores, etc.

Safety as in reachability of bad:

I individual configurations: assertion violation, mutual
exclusion, etc

I global configurations : deadlock, number of threads at certain
“states” is (e.g.,) smaller than the number of threads at some
other “states”, etc

Lazily Analysing the Result of Abstracting “Counting Processes” 3 / 29



Example

/* Only one main thread ,

* no other threads */

bool rd, op:=true;

int wt:=0,cn:=0;

main

{

while (*)

{

atomic

{

spawn(thread );

cn++;

}

op:= false;

}

}

thread

{

rd := true;

//do read

rd := false;

wt++;

assume (!op && (wt=cn));

assert (!rd);

}

Lazily Analysing the Result of Abstracting “Counting Processes” 4 / 29



Example

I “Reformulation:”
with identical threads.

I Initially, arbitrary
many threads are at
location lc0

I Location lc6
corresponds to the
violation of the
assertion

init: op = tt, rd = ff ,wt = 0, cn = 0

lc0

01 : op ⇒ cn++

lc1

12 : rd := tt

lc2

23 : rd := ff

lc3

34 : wt++

lc4

45 : (wt = cn)⇒ op := ff

lc5

56 : rd = tt

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 5 / 29



Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes” 6 / 29



Table of Contents

Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction



Predicate abstraction

init : op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

init :

lc0
01 : tt

lc1
12 : tt

lc2
23 : tt

lc3
34 : tt

lc4
45 : tt

lc5
56 : tt

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 8 / 29



Counter Machine

Counter abstraction of the boolean program
I Control States

I One state for each shared valuation of the Boolean program as
well as error state

I Counters
I One counter for each local valuation of the Boolean program

I Transitions
I Translation of all possible transitions in the Boolean program
I Local, global, transfer

Precisely captures the behavior of the boolean program

Lazily Analysing the Result of Abstracting “Counting Processes” 9 / 29



true

error

56

01, 12, 23, 34, 45

Lazily Analysing the Result of Abstracting “Counting Processes” 10 / 29



Counter Machine

Configuration

I State

I Value for each counter

Ordering on configurations
I c2 ≥ c1 iff

I Same state, larger counters in c2

Closing upwards

I Intuitively amounts to adding more threads to a configuration

Lazily Analysing the Result of Abstracting “Counting Processes” 11 / 29



Counter Machine

A counter machine induces a well structured transition system, if

I Monotonic
I The predecessor of every upward closed set is an upward closed

set

I Well-quasi-ordering
I Every increasing sequence of upward closed sets will eventually

stabilize

Lazily Analysing the Result of Abstracting “Counting Processes” 12 / 29



Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

I Classical backward reachability analysis

error

I Monotonicity: exactness
I Well-quasi-ordering: termination

Lazily Analysing the Result of Abstracting “Counting Processes” 13 / 29



Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

I Classical backward reachability analysis

error

I Monotonicity: exactness
I Well-quasi-ordering: termination

Lazily Analysing the Result of Abstracting “Counting Processes” 13 / 29



Predicate abstraction:

init : op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

init :

lc0
01 : tt

lc1
12 : tt

lc2
23 : tt

lc3
34 : tt

lc4
45 : tt

lc5
56 : tt

lc6

true

error

56

01, 12, 23, 34, 45

Lazily Analysing the Result of Abstracting “Counting Processes” 14 / 29



Predicate abstraction: (cont.)

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 15 / 29



(
π(wt=cn),

πop , πrd

)

(
¬π(wt=cn),

πop , πrd

)

(
π(wt=cn),

πop , ¬πrd

)

(
¬π(wt=cn),

πop , ¬πrd

)

(
π(wt=cn),

¬πop , πrd

)

(
¬π(wt=cn),

¬πop , πrd

)

(
π(wt=cn),

¬πop , ¬πrd

)

(
¬π(wt=cn),

¬πop , ¬πrd

)

error

01, 34

12

23

45

56

01, 12, 34
56

23

01, 34
12, 45

23

3456

12, 34

34

23

56

01, 34

12

23, 45

45

01, 34

01, 23, 34

12 12

23

34

34

12

23, 34

Lazily Analysing the Result of Abstracting “Counting Processes” 16 / 29



(
π(wt=cn),

πop , πrd

)

(
¬π(wt=cn),

πop , πrd

)

(
π(wt=cn),

πop , ¬πrd

)

(
¬π(wt=cn),

πop , ¬πrd

)

(
π(wt=cn),

¬πop , πrd

)

(
¬π(wt=cn),

¬πop , πrd

)

(
π(wt=cn),

¬πop , ¬πrd

)

(
¬π(wt=cn),

¬πop , ¬πrd

)

error

01, 34

12

23

45

56

01, 12, 34
56

23

01, 34
12, 45

23

3456

12, 34

34

23

56

01, 34

12

23, 45

45

01, 34

01, 23, 34

12 12

23

34

34

12

23, 34

Lazily Analysing the Result of Abstracting “Counting Processes” 16 / 29



Predicate abstraction: (cont.)

The relation between the number of processes at locations
lc1, lc2, lc3 and the predicate (wt = cn) is crucial (barrier).

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 17 / 29



Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes” 18 / 29



Table of Contents

Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction



Counting Predicates

I Threads have states defined by their location and the
predicates they satisfy on the program variables

I A counting predicate is a predicate that can involve:
I shared program variables,
I “ghost” counting variables N(π) representing the number of

threads satisfying some predicate π on the program variables

I We use them to define:
I Properties to be checked, whether individual or global
I Invariants that can be leveraged on during the analysis

Lazily Analysing the Result of Abstracting “Counting Processes” 20 / 29



Counting predicates for local properties:

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

N(@lc5∧rd) ≥ 1 reachable?

Lazily Analysing the Result of Abstracting “Counting Processes” 21 / 29



Counting predicates for global properties:

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

lc4

34 : wt++34′ : tt

45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6(
Σi 6=4N(@lci ) +N(@lc4∧op∧wt=cn) = 0

)
reachable?

Lazily Analysing the Result of Abstracting “Counting Processes” 22 / 29



Strengthening with Counting Predicates as Invariants

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

An appropriate thread modular
analysis gives:

Invariants
cn =

∑
i≥1(N(@lci ))

wt =
∑

i≥3(N(@lci ))

So each time (wait = count):
N(@lc1) +N(@lc2) +N(@lc3) = 0

...source of non-monotonicity

Lazily Analysing the Result of Abstracting “Counting Processes” 23 / 29



(
π(wt=cn),

πop , πrd

)

(
¬π(wt=cn),

πop , πrd

)

(
π(wt=cn),

πop , ¬πrd

)

(
¬π(wt=cn),

πop , ¬πrd

)

(
π(wt=cn),

¬πop , πrd

)

(
¬π(wt=cn),

¬πop , πrd

)

(
π(wt=cn),

¬πop , ¬πrd

)

(
¬π(wt=cn),

¬πop , ¬πrd

)

error

01, 34

12

23

45

56

01, 12, 34
56

23

01, 34
12, 45

23

3456

12, 34

34

23

56

01, 34

12

23, 45

45

01, 34

01, 23, 34

12 12

23

34

34

12

23, 34

Lazily Analysing the Result of Abstracting “Counting Processes” 24 / 29



(
π(wt=cn),

πop , πrd

)

(
¬π(wt=cn),

πop , πrd

)

(
π(wt=cn),

πop , ¬πrd

)

(
¬π(wt=cn),

πop , ¬πrd

)

(
π(wt=cn),

¬πop , πrd

)

(
¬π(wt=cn),

¬πop , πrd

)

(
π(wt=cn),

¬πop , ¬πrd

)

(
¬π(wt=cn),

¬πop , ¬πrd

)

error

01, 34

12

23

45

56

01, 12, 34
56

23

01, 34
12, 45

23

3456

12, 34

34

23

56

01, 34

12

23, 45

45

01, 34

01, 23, 34

12 12

23

34

34

12

23, 34

Lazily Analysing the Result of Abstracting “Counting Processes” 24 / 29



Global Configurations

I Checking reachability of global configurations amounts to
adding tests in the counter machine,

I For deadlocks we test that the number of enabled threads is
zero,

I This makes the system non-monotonic

Lazily Analysing the Result of Abstracting “Counting Processes” 25 / 29



Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes” 26 / 29



Table of Contents

Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2

lc4
45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2

lc4
45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6

Lazily Analysing the Result of Abstracting “Counting Processes” 28 / 29



PACMAN: PredicAted Constrained Monotonic
AbstractioN

predicate
abstraction

boolean
program

counter
abstraction

simulation on
original prog

counter
machine

monotonic
abstraction

simulation
on counter

machine

input prog,
property

unreachable
property

counter
example

Lazily Analysing the Result of Abstracting “Counting Processes” 29 / 29


	Goal and motivation
	Predicate Abstraction
	Strengthening
	Monotonic abstraction

