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Goal

Verify safety of multi-threaded programs:
» involving an arbitrary number of threads (i.e. parameterized)

» synchronizing using “process counting variables”, barriers,
semaphores, etc.

Safety as in reachability of bad:

» individual configurations: assertion violation, mutual
exclusion, etc

» global configurations : deadlock, number of threads at certain
“states” is (e.g.,) smaller than the number of threads at some
other “states”, etc
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Example

/* Only one main thread,
* no other threads */

bool rd, op:=true;
int wt:=0,cn:=0;

main thread
{
while (%) rd := true;
{
atomic //do read
{
spawn (thread); rd := false;
cn++; Wt
} assume (!op && (wt=cn));
op:=false; assert (!rd);
s }
}
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Example

>

“Reformulation:”

with identical threads.

Initially, arbitrary
many threads are at
location /¢y

Location /cq
corresponds to the
violation of the
assertion

init: op=tt,rd =ff,wt =0,cn =0

i op=cntt

owttt

: (wt=cn)= op:=ff

cord = tt
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Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes”

6/ 29



Table of Contents

Predicate Abstraction



Predicate abstraction

init : op=tt,rd = ff,wt =0,cn =20 init :
i op=cntt D ott
tord = tt Tott
©ord = ff Dot
owttt Tttt
: (wt=cn) = op:=ff Dott
Cord = tt Dot
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Counter Machine

Counter abstraction of the boolean program
» Control States

» One state for each shared valuation of the Boolean program as
well as error state

» Counters
» One counter for each local valuation of the Boolean program
» Transitions

» Translation of all possible transitions in the Boolean program
» Local, global, transfer

Precisely captures the behavior of the boolean program
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error

true

U

01,12, 23, 34, 45
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Counter Machine

Configuration
» State
» Value for each counter
Ordering on configurations
> ¢ > (C iff
» Same state, larger counters in ¢,

Closing upwards

» Intuitively amounts to adding more threads to a configuration
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Counter Machine

A counter machine induces a well structured transition system, if

» Monotonic

» The predecessor of every upward closed set is an upward closed
set

» Well-quasi-ordering

» Every increasing sequence of upward closed sets will eventually
stabilize
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Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

» Classical backward reachability analysis

=\
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Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

» Classical backward reachability analysis

=\

» Monotonicity: exactness
» Well-quasi-ordering: termination
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Predicate abstraction:

init : op=tt,rd = ff,wt =0,cn =20

0l: op=cn™™

2: rd:=tt

3: rd = ff

4 wttt

5: (wt =cn) = op:= ff

6: rd = tt

oottt

Cott

oottt

oottt

ottt

oottt
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Predicate abstraction: (cont.)

op=tt,rd =ff,wt =0,cn =0 T(op) = tbs T(rd) = tt, M(we=cn) = t ey

01: T(op) = T(wt=cn) = Ch(ff,?’l‘(m:cn))

21 7(rg) = ch(tt, fF)
3: rd = ff 31 7(rg) = ch(ff, tt)
4 wirtt 4 T (wtmcn) = ch(ff, Twt=cn)
5: (wt =cn) = op:= ff 5 1 T(wt=cn) = T(op) = fF

6: rd = tt 6 : T(rd)
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Predicate abstraction: (cont.)

The relation between the number of processes at locations
le1, lca, Iez and the predicate (wt = cn) is crucial (barrier).
op=tt,rd =ff,wt=0,cn=20 T(op) = tt, W(ra) = tt, T(we=cn) = tt )—

£ M(op) = M(we=cn) = Ch(fF, T(wi=cn))
$ M(rg) 1= ch(tt, fF)

3: rd:=ff § T(rdy i= ch(fF, tt)
4wttt D TM(wt=cn) ‘= ch(ff, Twt=cn)
5: (wt=cn)= op:=ff

* T(wt=cn) = T(op) ‘= ff

56: rd = tt
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Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction
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Counting Predicates

» Threads have states defined by their location and the
predicates they satisfy on the program variables
» A counting predicate is a predicate that can involve:

» shared program variables,
» “ghost” counting variables ./\/(ﬂ) representing the number of
threads satisfying some predicate m on the program variables

» We use them to define:

» Properties to be checked, whether individual or global
» Invariants that can be leveraged on during the analysis
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Counting predicates for local properties:

op=tt,rd =ff,wt=0,cn=0

: op= cntt

Dord = tt

cord = ff

cowttt

: (wt=cn) = op:=ff

cord = tt

N(@icsnrd) > 1 reachable?
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Counting predicates for global properties:

op=tt,rd =fF,wt=0,cn =0 )—

0l: op=>cnt™t

2: rd:=tt

3: rd:=ff

@@

34':tt§ l 34 wttt

45: (wt =cn) = op := ff

56: rd = tt

Ice

(Zi5£4~/\/’(@lc,') +M©lq/\op/\wt:cn) = O) reachable?
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Strengthening with Counting Predicates as Invariants

op=tt,rd =ff,wt=0,cn =0

An appropriate thread modular

0l: op=cnt™ analysis gives:
Invariants
2: rd:=tt
cn = Zi21(/\/(@/c,-))
3. rd = ff wt =3 53(Mere))

. ++ . .
bt So each time (wait = count):

N@ie) + Neie,) + Neie;) =0

5: (wt =cn) = op:= ff

6: rd = tt ..
...source of non-monotonicity
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Global Configurations

» Checking reachability of global configurations amounts to
adding tests in the counter machine,

» For deadlocks we test that the number of enabled threads is
Zero,

» This makes the system non-monotonic
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Backward Reachability Analysis

W

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)
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PACMAN: PredicAted Constrained Monotonic
AbstractioN

boolean
program

input prog,
property

counter
predicate abstraction

~

abstraction

counter
machine

simulation on

el o) [miier]  (monotonic
\ machine abstraction
N
counter unreachable
example property
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