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Goal

Verify safety of multi-threaded programs:

I involving an arbitrary number of threads (i.e. parameterized)

I synchronizing using “process counting variables”, barriers,
semaphores, etc.

Safety as in reachability of bad:

I individual configurations: assertion violation, mutual
exclusion, etc

I global configurations : deadlock, number of threads at certain
“states” is (e.g.,) smaller than the number of threads at some
other “states”, etc
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Example

/* Only one main thread ,

* no other threads */

bool rd, op:=true;

int wt:=0,cn:=0;

main

{

while (*)

{

atomic

{

spawn(thread );

cn++;

}

op:= false;

}

}

thread

{

rd := true;

//do read

rd := false;

wt++;

assume (!op && (wt=cn));

assert (!rd);

}
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Example

I “Reformulation:”
with identical threads.

I Initially, arbitrary
many threads are at
location lc0

I Location lc6
corresponds to the
violation of the
assertion

init: op = tt, rd = ff ,wt = 0, cn = 0

lc0

01 : op ⇒ cn++

lc1

12 : rd := tt

lc2

23 : rd := ff

lc3

34 : wt++

lc4

45 : (wt = cn)⇒ op := ff

lc5

56 : rd = tt

lc6
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Predicate abstraction

init : op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

init :

lc0
01 : tt

lc1
12 : tt

lc2
23 : tt

lc3
34 : tt

lc4
45 : tt

lc5
56 : tt

lc6
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Counter Machine

Counter abstraction of the boolean program
I Control States

I One state for each shared valuation of the Boolean program as
well as error state

I Counters
I One counter for each local valuation of the Boolean program

I Transitions
I Translation of all possible transitions in the Boolean program
I Local, global, transfer

Precisely captures the behavior of the boolean program
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true

error

56

01, 12, 23, 34, 45
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Counter Machine

Configuration

I State

I Value for each counter

Ordering on configurations
I c2 ≥ c1 iff

I Same state, larger counters in c2

Closing upwards

I Intuitively amounts to adding more threads to a configuration
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Counter Machine

A counter machine induces a well structured transition system, if

I Monotonic
I The predecessor of every upward closed set is an upward closed

set

I Well-quasi-ordering
I Every increasing sequence of upward closed sets will eventually

stabilize
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Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

I Classical backward reachability analysis

error

I Monotonicity: exactness
I Well-quasi-ordering: termination
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Predicate abstraction:

init : op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

init :

lc0
01 : tt

lc1
12 : tt

lc2
23 : tt

lc3
34 : tt

lc4
45 : tt

lc5
56 : tt

lc6

true

error

56

01, 12, 23, 34, 45
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Predicate abstraction: (cont.)

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6
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(
π(wt=cn),

πop , πrd

)

(
¬π(wt=cn),

πop , πrd

)

(
π(wt=cn),

πop , ¬πrd

)

(
¬π(wt=cn),

πop , ¬πrd

)

(
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)
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)

(
π(wt=cn),
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¬π(wt=cn),
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)

error

01, 34

12

23

45

56

01, 12, 34
56

23

01, 34
12, 45
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Predicate abstraction: (cont.)

The relation between the number of processes at locations
lc1, lc2, lc3 and the predicate (wt = cn) is crucial (barrier).

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6
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Counting Predicates

I Threads have states defined by their location and the
predicates they satisfy on the program variables

I A counting predicate is a predicate that can involve:
I shared program variables,
I “ghost” counting variables N(π) representing the number of

threads satisfying some predicate π on the program variables

I We use them to define:
I Properties to be checked, whether individual or global
I Invariants that can be leveraged on during the analysis
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Counting predicates for local properties:

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

N(@lc5∧rd) ≥ 1 reachable?
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Counting predicates for global properties:

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

lc4

34 : wt++34′ : tt

45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6(
Σi 6=4N(@lci ) +N(@lc4∧op∧wt=cn) = 0

)
reachable?
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Strengthening with Counting Predicates as Invariants

op = tt, rd = ff ,wt = 0, cn = 0

lc0
01 : op ⇒ cn++

lc1
12 : rd := tt

lc2
23 : rd := ff

lc3

34 : wt++

lc4
45 : (wt = cn)⇒ op := ff

lc5
56 : rd = tt

lc6

An appropriate thread modular
analysis gives:

Invariants
cn =

∑
i≥1(N(@lci ))

wt =
∑

i≥3(N(@lci ))

So each time (wait = count):
N(@lc1) +N(@lc2) +N(@lc3) = 0

...source of non-monotonicity
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Global Configurations

I Checking reachability of global configurations amounts to
adding tests in the counter machine,

I For deadlocks we test that the number of enabled threads is
zero,

I This makes the system non-monotonic
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Backward Reachability Analysis

lc0
lc0

...

lc1
lc4

12

lc4
34

lc2
lc4

45

lc5
56

error

π(op) = tt, π(rd) = tt, π(wt=cn) = tt

lc0
01 : π(op) ⇒ π(wt=cn) := ch(ff , π(wt=cn))

lc1
12 : π(rd) := ch(tt,ff )

lc2
23 : π(rd) := ch(ff , tt)

lc3
34 : π(wt=cn) := ch(ff , πwt=cn)

lc4
45 : π(wt=cn) ⇒ π(op) := ff

lc5
56 : π(rd)

lc6
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PACMAN: PredicAted Constrained Monotonic
AbstractioN

predicate
abstraction

boolean
program

counter
abstraction

simulation on
original prog

counter
machine

monotonic
abstraction

simulation
on counter

machine

input prog,
property

unreachable
property

counter
example
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