Lazily Analysing the Result of Abstracting
“Counting Processes”

Ahmed Rezine

joint work with: Zeinab Ganjei, Petru Eles, Zebo Peng
Linkoping University, Sweden

Madrid 2015



Table of Contents

Goal and motivation



Goal

Verify safety of multi-threaded programs:
» involving an arbitrary number of threads (i.e. parameterized)

» synchronizing using “process counting variables”, barriers,
semaphores, etc.

Safety as in reachability of bad:

» individual configurations: assertion violation, mutual
exclusion, etc

» global configurations : deadlock, number of threads at certain
“states” is (e.g.,) smaller than the number of threads at some
other “states”, etc

Lazily Analysing the Result of Abstracting “Counting Processes” 3/29



Example

/* Only one main thread,
* no other threads */

bool rd, op:=true;
int wt:=0,cn:=0;

main thread
{
while (%) rd := true;
{
atomic //do read
{
spawn (thread); rd := false;
cn++; Wt
} assume (!op && (wt=cn));
op:=false; assert (!rd);
s }
}

Lazily Analysing the Result of Abstracting “Counting Processes” 4/29



Example

>

“Reformulation:”

with identical threads.

Initially, arbitrary
many threads are at
location /¢y

Location /cq
corresponds to the
violation of the
assertion

init: op=tt,rd =ff,wt =0,cn =0

i op=cntt

owttt

: (wt=cn)= op:=ff

cord = tt

Lazily Analysing the Result of Abstracting “Counting Processes” 5/29




Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes”

6/ 29



Table of Contents

Predicate Abstraction



Predicate abstraction

init : op=tt,rd = ff,wt =0,cn =20 init :
i op=cntt D ott
tord = tt Tott
©ord = ff Dot
owttt Tttt
: (wt=cn) = op:=ff Dott
Cord = tt Dot
Lazily Analysing the Result of Abstracting “Counting Processes” 8 /29




Counter Machine

Counter abstraction of the boolean program
» Control States

» One state for each shared valuation of the Boolean program as
well as error state

» Counters
» One counter for each local valuation of the Boolean program
» Transitions

» Translation of all possible transitions in the Boolean program
» Local, global, transfer

Precisely captures the behavior of the boolean program

Lazily Analysing the Result of Abstracting “Counting Processes” 9/29



error

true

U

01,12, 23, 34, 45

Lazily Analysing the Result of Abstracting “Counting Processes” 10 / 29



Counter Machine

Configuration
» State
» Value for each counter
Ordering on configurations
> ¢ > (C iff
» Same state, larger counters in ¢,

Closing upwards

» Intuitively amounts to adding more threads to a configuration

Lazily Analysing the Result of Abstracting “Counting Processes” 11 /29



Counter Machine

A counter machine induces a well structured transition system, if

» Monotonic

» The predecessor of every upward closed set is an upward closed
set

» Well-quasi-ordering

» Every increasing sequence of upward closed sets will eventually
stabilize

Lazily Analysing the Result of Abstracting “Counting Processes” 12 /29



Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

» Classical backward reachability analysis

=\

Lazily Analysing the Result of Abstracting “Counting Processes” 13 /29



Reachability Analysis

Check whether a control state is reachable from an initial
configuration
Well structured systems:

» Classical backward reachability analysis

=\

» Monotonicity: exactness
» Well-quasi-ordering: termination

Lazily Analysing the Result of Abstracting “Counting Processes” 13 /29



Predicate abstraction:

init : op=tt,rd = ff,wt =0,cn =20

0l: op=cn™™

2: rd:=tt

3: rd = ff

4 wttt

5: (wt =cn) = op:= ff

6: rd = tt

oottt

Cott

oottt

oottt

ottt

oottt

Lazily Analysing the Result of Abstracting “Counting Processes”

14 /29

error

true

U

01,12, 23, 34, 45



Predicate abstraction: (cont.)

op=tt,rd =ff,wt =0,cn =0 T(op) = tbs T(rd) = tt, M(we=cn) = t ey

01: T(op) = T(wt=cn) = Ch(ff,?’l‘(m:cn))

21 7(rg) = ch(tt, fF)
3: rd = ff 31 7(rg) = ch(ff, tt)
4 wirtt 4 T (wtmcn) = ch(ff, Twt=cn)
5: (wt =cn) = op:= ff 5 1 T(wt=cn) = T(op) = fF

6: rd = tt 6 : T(rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 15 / 29



01,12, 34

A

error

)

( T (wt=cn)» )
Tops Trd
01,34 56 56 34,
12 12,45
01,34 Q s T~ Q
( T (wt=cn) ) ( T(wt=cn) )
Tops Trd “Top, Trd
12 23 12 23 12 23
— 5 >
( T (wt=cn)>» ) ( T (wt=cn)>»
Top, Trd T Top; T Trd
U U
23, 45 23
01,34 34
( T (wt=cn)» )
Tops TTrd
01,23, 34

Lazily Analysing the Result of Abstracting “Counting Processes”

12,34

A

T (wt=cn)»
Trd

(

.

23

\

(

)

“Top,

|

T (wt=cn)>

T Top, TTrd )

U

23,34

16 / 29



01,12, 34

A

error

( T (wt=cn)> )
Tops Trd
01, 34 56 56 34
12 12,45
01,34 Q s T~ Q
( T (wt=cn) ) ( T(wt=cn) )
Tops Trd TTops Trd
12 23 12 23 12 23
m
( T (wt=cn)>» ) < T (wt=cn)>»
Top, Trd T Top; T Trd
U U
J 23, 45 23
4 01,34

T (wt=cn)»
Trd

( )

Tops

U

01,23, 34

Lazily Analysing the Result of Abstracting “Counting Processes”

34

)

12,34

A

T (wt=cn)»
Trd

(

.

23

\

(

)

“Top,

|

T (wt=cn)>

TTops T Trd )

U

23,34

16 / 29



Predicate abstraction: (cont.)

The relation between the number of processes at locations
le1, lca, Iez and the predicate (wt = cn) is crucial (barrier).
op=tt,rd =ff,wt=0,cn=20 T(op) = tt, W(ra) = tt, T(we=cn) = tt )—

£ M(op) = M(we=cn) = Ch(fF, T(wi=cn))
$ M(rg) 1= ch(tt, fF)

3: rd:=ff § T(rdy i= ch(fF, tt)
4wttt D TM(wt=cn) ‘= ch(ff, Twt=cn)
5: (wt=cn)= op:=ff

* T(wt=cn) = T(op) ‘= ff

56: rd = tt

Lazily Analysing the Result of Abstracting “Counting Processes” 17 / 29



Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes”

18 /29



Table of Contents

Strengthening



Counting Predicates

» Threads have states defined by their location and the
predicates they satisfy on the program variables
» A counting predicate is a predicate that can involve:

» shared program variables,
» “ghost” counting variables ./\/(ﬂ) representing the number of
threads satisfying some predicate m on the program variables

» We use them to define:

» Properties to be checked, whether individual or global
» Invariants that can be leveraged on during the analysis

Lazily Analysing the Result of Abstracting “Counting Processes” 20 /29



Counting predicates for local properties:

op=tt,rd =ff,wt=0,cn=0

: op= cntt

Dord = tt

cord = ff

cowttt

: (wt=cn) = op:=ff

cord = tt

N(@icsnrd) > 1 reachable?

Lazily Analysing the Result of Abstracting “Counting Processes” 21 /29



Counting predicates for global properties:

op=tt,rd =fF,wt=0,cn =0 )—

0l: op=>cnt™t

2: rd:=tt

3: rd:=ff

@@

34':tt§ l 34 wttt

45: (wt =cn) = op := ff

56: rd = tt

Ice

(Zi5£4~/\/’(@lc,') +M©lq/\op/\wt:cn) = O) reachable?

Lazily Analysing the Result of Abstracting “Counting Processes” 22 /29



Strengthening with Counting Predicates as Invariants

op=tt,rd =ff,wt=0,cn =0

An appropriate thread modular

0l: op=cnt™ analysis gives:
Invariants
2: rd:=tt
cn = Zi21(/\/(@/c,-))
3. rd = ff wt =3 53(Mere))

. ++ . .
bt So each time (wait = count):

N@ie) + Neie,) + Neie;) =0

5: (wt =cn) = op:= ff

6: rd = tt ..
...source of non-monotonicity

Lazily Analysing the Result of Abstracting “Counting Processes” 23 /29



01,12, 34

A

error

)

( T (wt=cn)» )
Tops Trd
01,34 56 56 34,
12 12,45
01,34 Q s T~ Q
( T (wt=cn) ) ( T(wt=cn) )
Tops Trd “Top, Trd
12 23 12 23 12 23
— 5 >
( T (wt=cn)>» ) ( T (wt=cn)>»
Top, Trd T Top; T Trd
U U
23, 45 23
01,34 34
( T (wt=cn)» )
Tops TTrd
01,23, 34

Lazily Analysing the Result of Abstracting “Counting Processes”

12,34

A

T (wt=cn)»
Trd

(

.

23

\

(

)

“Top,

|

T (wt=cn)>

T Top, TTrd )

U

23,34

24 / 29



01,12, 34

A

T (wt=cn)> )
Tops Trd

01, 34 56
12
01, 34
( T(wt=cn)>
Tops Trd
12 23 12 23
( T (wt=cn)>»
Top, Trd
01, 34 U
23,45
01, 34
( T (wt=cn)» )
Tops TTrd
01,23, 34

error

12, 45

)

) ( T(wt=cn)
TTops Trd
12 23
s
) < T (wt=cn)>»
~Top; Mg

v,

23

Lazily Analysing the Result of Abstracting “Counting Processes”

34

) 33
\L

24 / 29

(

J

(

12,34

A

T (wt=cn)» )

T Tops Trd

23

T (wt=cn)>

TTops T Trd )

U

23,34



Global Configurations

» Checking reachability of global configurations amounts to
adding tests in the counter machine,

» For deadlocks we test that the number of enabled threads is
Zero,

» This makes the system non-monotonic

Lazily Analysing the Result of Abstracting “Counting Processes” 25 /29



Goal and motivation

Predicate Abstraction

Strengthening

Monotonic abstraction

Lazily Analysing the Result of Abstracting “Counting Processes”

26 / 29



Table of Contents

Monotonic abstraction



Backward Reachability Analysis

W

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

error,
W \/
56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

lca W W
45 56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

WY ERWE
34 45 56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

/C2
\&[—\ N XT
34 45 56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

Ic Ic:
12 34 ’ 45 56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



Backward Reachability Analysis

Ic Ic Ic:
Ico \les Ics \C/ W W
- 12 34 ’ 45 56

T, T(rd) = U6, M(wt=cn) = T Jrmmme

F M(op) = T(wt=cn) = h(fF, M(we=cn))
: T(rq) += ch(tt, fF)

D T(rq) := ch(ff, tt)

! T(wt=cn) 1= ch(ff, Twt=cn)

T (we=cn) = T(op) =

F T (rd)

Lazily Analysing the Result of Abstracting “Counting Processes” 28 /29



PACMAN: PredicAted Constrained Monotonic
AbstractioN

boolean
program

input prog,
property

counter
predicate abstraction

~

abstraction

counter
machine

simulation on

el o) [miier]  (monotonic
\ machine abstraction
N
counter unreachable
example property

Lazily Analysing the Result of Abstracting “Counting Processes” 29 /29



	Goal and motivation
	Predicate Abstraction
	Strengthening
	Monotonic abstraction

