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Background
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Petri Nets: Rendez-vous Synchronization
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Broadcast Protocols: Transfer Arcs

la
o —
273 Broadcast

o —©0
® O®@® @® curentmarking
‘ . ‘ new marking

G. Delzanno Verification of Broadcast Networks 4/49



Coverability

Let My < M, if, for any color ¢, the number of c-tokens in M is
less than that in M

@ Input: Markings My and M;

@ Problem: Is there M s.t. My < M, and there is a
computation from My to My?
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Known Properties

@ Reachability and Coverability are decidable for Petri Nets
@ Karp-Miller construction solves Coverability
o Coverability is decidable for Broadcast Protocols

o Backward Reachability using upward closed sets of markings is
guaranteed to terminate
@ Complexity is non-primitive recursive
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Coverability vs Parameterized Verification
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What if nodes are distributed on a graph?
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Broadcast Communication on a Graph
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Broadcast Communication on a Graph
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Basic Model for Ad Hoc Networks (AHN)

@ An Ad Hoc Network (AHN)! is a network of communicating
automata distributed over an undirected graph.

@ Each node runs a predefined common protocol.

@ Synchronous selective broadcast messages.

!Delzanno, Sangnier, Zavattaro: Parameterized verification of ad hoc
networks. CONCUR'10.

Delzanno, Sangnier, Zavattaro: On the Power of Cliques in the Parameterized
Verification of Ad Hoc Networks. FOSSACS'11.
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Generalization of Coverability (COVER)

For:

@ a (possibly infinite) class of graphs G (initial network
configurations)

Given:

@ an automaton/protocol P

@ a specification ¢ of target states (e.g. is there a red node?)
Output:

@ True iff there is an initial configuration in G s.t., by executing
‘P on each node, the network may reach a configuration
satisfying ¢
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Expressive Power?

@ Fixed initial configuration:

o Finite-state systems that are computationally expensive to
verify with existing model checkers like Spin, SMV, Uppaal,
Groove.

@ Unknown initial configuration, specification: existence of a
"red” node

@ Verification becomes undecidable: discovery protocols can be
used to build unbounded data structures, e.g., a list of
arbitrary length.
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Discovery
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Discovery
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Discovery
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Decidability

@ COVER becomes decidable by restricting configurations in
specific classes of graphs.

o Fully connected topologies

@ K-bounded path graphs, i.e., graphs in which all simple paths
have length < K (fully connect graphs # not bounded path
graphs)

o Graphs in which when collapsing maximal cliques we still have
K-bounded paths only
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Bounded Path Graphs: WSTS as proof technique

@ Transitions are monotone w.r.t. the induced subgraph ordering

@ Induced subgraph ordering over K-bounded path graph is a
well quasi ordering [Ding '90]

@ We can effectively compute predecessors of upward closed sets
of graphs (for graphs of size n we need to consider at most
graphs of size n+ 1)
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Remark 1: Induced vs Subgraph
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Remark 2: Subgraphs is not OK
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Remark 3: Induced is not a wqo for arbitrary graphs

infinite sequence of incomparable graphs
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Possible Extensions

... no fixed infrastructure, dynamically changing:
reconfigurations

. asynchronous communication

.value passing

.failures of nodes and/or communication channels
.time constraints

. permission and access control
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AHN + Reconfigurations

@ Reconfiguration = the topology of the network can change
non-deterministically during an execution (node mobility, link
failures/intermittence) 2

2Delzanno, Sangnier, Traverso, Zavattaro. On the Complexity of
Parameterized Reachability in Reconfigurable Broadcast Networks.
FSTTCS'12.
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AHN -+ Reconf.: COVER

As specification language, we consider cardinality constraints (CC)
on the number of processes in a given control state:

pur=al#g<blohp|pVe|-p

where a € N, g is a local control state, and b € (N\ {0}) U {+o0}.

@ COVER with no restrictions on the initial number of processes.
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AHN 4 Reconf.: Results

@ COVER is PTiME-complete for CC without negation and with
only #q > 1 atoms

o Keypoint: if two processes can make a transition, any number
of processes can do the same transition

@ No need to count: Saturation procedures that collects the set
of labels that can be produced by applying transitions

@ For CC with #g > 1 atoms and negation COVER is
NP-complete.

@ COVER is PSPACE-complete for unrestricted CC.
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AHN + Asynchronous Communication

@ A variant of AHNs with asynchronous broadcast
communication.3

@ Unread messages are kept in local mailboxes.

@ We consider different disciplines for handling mailboxes:

& multisets, to model the loss of the order of incoming
messages;

@ lossy FIFO queues, to model the loss of messages;

@ FIFO queues, to model perfect communication.

3Delzanno, Traverso: A Formal Model of Asynchronous Broadcast
Communication. ICTCS'12.

Delzanno, Traverso: Decidability and Complexity Results for Verification of
Asynchronous Broadcast Networks. LATA'13.
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AHN + Asynch.: Example #1
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AHN —+ Asynch.: Example #2
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AHN -+ Asynch.: Example #3
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AHN + Asynch.: Goal

To decidability boundaries for COVER we must consider
@ the policy to handle local mailboxes;
@ the shape of connection graph;

@ the capability to recognize empty mailboxes (e-transitions).
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AHN + Asynch.: Undecidability with Emptiness Test

COVER for multisets and emptiness test is undecidable

Reduction of halting problem for two-counter machines.
Proof idea: The emptiness test can be exploited both for
zero-testing and interference detection.
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AHN + Asynch.: Undecidability with Emptiness Test

Reduction of halting problem for two-counter machines in which
the emptiness test can be exploited both for zero-testing and
interference detection

@ The encoded protocol is split in two phases: election and
simulation.

@ During the election processes choose their role.

@ The simulation requires a leader process directly connected to
two slaves (one per counter).
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AHN + Asynch.: Undecidability with Emptiness Test

@ Each node chooses a role and searches for appropriate
neighbours accordingly.

@ Election only tests for the presence of the required links
between nodes with the various roles.

@ Messages exchanged during the election can never be
consumed afterwards.

@ A successful election ends leaving empty mailboxes in the
involved nodes.
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AHN + Asynch.: Undecidability with Emptiness Test
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AHN + Asynch.: Undecidability with Emptiness Test

@ Counters are encoded (in unary) through messages in the
mailboxes.
o For increment it is sufficient to send a broadcast with a unit.
o A decrement forces the removal of a unit from the mailbox of

the slave.
@ Tests for zero are performed by exploiting tests for emptiness.

v
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AHN + Asynch.: Undecidability with Emptiness Test
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AHN + Asynch.: Undecidability with Emptiness Test

What if other neighbours wake up and start a simulation leading to
interferences with the current one?
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AHN + Asynch.: Undecidability with Emptiness Test

What if other neighbours wake up and start a simulation leading to
interferences with the current one? )

Finalization

@ Reminder: we cannot consume messages from the election
during the simulation.

o After reaching the target control state, we reset both counters
to zero in order to try to empty all mailboxes.

o If all mailboxes are empty the simulation ends successfully,
otherwise it blocks just before completing.

A,
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AHN + Asynch.: Undecidability with Emptiness Test

P |
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AHN —+ Asynch.: Results

COVER® (M) COVER(M)

without € with ¢ without € with €

LFIFO PTmMe PTiMe PTiME PTIME
Multiset PTIME undec. PTIME undec.
FIFO undec. undec. undec. undec.

Asynch. without € / with €

AHN  LFIFO Multiset FIFO
Fully connected graphs v PTimME PTIME/undec. undec.
Arbitrary graphs undec. PTIME PTIME/undec. undec.
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AHN -+ Data + Reconfigurations

Broadcast Networks of Register Automata®.

Each process has local registers:
@ with values ranging over N;
¢ initialized with fresh values w.r.t. the whole network;
o read-only ones act as process identifiers.

(]

Messages have some payload fields to exchange data.

Upon reception of a message with a payload, processes may:

@ test (in)equality w.r.t. local registers;
@ store values in local registers;
s ignore (a part of) the payload.

@ Dynamic network reconfigurations (w.r.t. edges).

*Delzanno, Sangnier, Traverso. Parameterized Verification of Broadcast
Networks of Register Automata. RP'13.
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AHN -+ Data + Reconf.: Example

b(rreq, id) r(rreq, )

r(rrep, | next
e e L G R s o ]
e e bi(rrep, d)
T
r(rreq, ) b(rreq, id) b(rrep, id)

reply

r(rrep, Lnext) (:—1
)

@ sender nodes want to keep a route towards some dest node.

@ Two registers: id and next.

@ Initial states: sender, idle, dest.
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AHN -+ Data + Reconf.: COVER

We consider queries expressing graph inclusion patterns:

¢ = q(2) | Mi(z) = M(Z) | Mi(2) # Mi(Z) | ¢ Ao

where z, z' are from a denumerable set of variables, g is a local
control state, and /,j € N are register indexes.

@ No restrictions on the initial number of processes or network
topology.
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AHN -+ Data + Reconf.: Example Query

b(rreq, id) r(rreq, *)

r(rrep, [ next
P e — ) dest [ raux|
- b(rrep. d)
T
r(rreq, ) b(rreq, id)

r(rrep, Lnext) W b(rrep, id)
)

ready(z1) A ready(z2) A Mig(z1) = Mpext(22) A Mpext(21) = Mig(22)
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AHN 4 Data + Reconf.: Goal

Explore decidability boundaries for COVER:
@ restrictions on the number of registers in each node;
@ restrictions on the number of fields in each message;

o static topology vs dynamic reconfigurations.
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AHN + Data + Reconf.: Results

Without network reconfigurations (fully connected case):
@ 1 RW registers, 1 payload field = non-elementary
@ 1 RO 4+ 1 RW registers, 1 payload field = undecidable
With reconfigurations:
@ k > 0 RW registers, 1 payload field = PSPACE-complete
@ 1 RO 4+ 1 RW registers, 2 payload fields = undecidable
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AHN + Data + Reconf.: Undecidability

@ For each restricted model for which it's possible, we provide a
list-builder protocol.

@ A list-builder uses registers as pointers to build linked lists of
nodes.
@ It is enough to define a list-builder to prove undecidability:

@ the protocol is extended in order to encode a 2-counter
machine;

& only the subset of features common to all models is used.
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AHN + Data + Reconf.: List-Builder

network reconfigurations, 2 registers, 2 fields:

b(s, id, id) r(a,lx,?id) _U b(sa, id, x) @

r(sa, ?x,?id}( )
( qi T "1 dh

b(s, id, id)

G. Delzanno Verification of Broadcast Networks 44/49



AHN + Data + Reconf.: List-Builder

network reconfigurations, 2 registers, 2 fields:

b(s, id, id) r(a,lx,?id) _U b(sa, id, x) @

r(s,dx, %)

r(sa, ?x,?id}( )
( qi T "1 dh

(]
U
b(sa, id, x) r(a, lx,?id)
9z D b(s, id, id)

—> undecidability
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More Recent Work [TGC 2015, GandALF 2015]

Concurrent model for an abstraction of the life cycle of Android
Components

@ Activities are abstracted into finite state automata with local
registers (to model data)

@ Callbacks are defined via value passing messages

@ Permissions are statically defined via a dependency graph
between definitions

We study decidability boundaries for the following problems

@ Violation of the permission model during component
execution (run time errors)

@ Detection of conflicts due to data exchanged by components
with incompatible permissions

Decidability using History WSTS in which monadic predicates
maintain footprints of data along a computation
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Summarizing. ..

@ ...we studied the impact on decidability and complexity for
several basic features of ad hoc protocols, considering also the
interplay between them:

& synchronous communication,

@ asynchronous communication,

@ local clocks,

@ dynamic network reconfigurations,
o data.

@ ...decidability is hard to achieve in general, but not
impossible:
@ search for good compromises between features of the model,
approximations, and expressivity;
o there is a relation between asynchronous communication and
reconfigurations, but the latter is easier to handle.
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