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Motivation

I First target: concurrent data structures

I Goal: Formal Verification (proving system correct)

I Liveness is as interesting as safety properties

I Parametrization to enable verification for all system instances

I Unstructured fine-grained synchronization methods

I Need to tackle lock-based and lock-free synchronization

I Complex data types: lists, trees, skiplists, hash-maps, etc

I Automation preferable but not mandatory
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means:

forall N
P [N ] � p
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Uniform Verification Problem

Safety Properties
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Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

Why this rule does not work for parametrized systems?
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mutex(i, j) =̂ 
[
i 6= j → ¬(critical(i) ∧ critical(j))

]

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure
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Parametrized Invariance

Parametrized Invariance exploits the similarities
of fully symetric systems

Our solution

Problem

I Specialized invariance proof rules

I Finite and bounded number of verification conditions

Unbounded number of verification conditions
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I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

( I ) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

( I ) Θ(i, j) → mutex
(SC) mutex ∧ τ (i) → mutex′ forall τ

mutex ∧ τ (j) → mutex′ forall τ
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Independently on #threads in the system
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I ... transition 4 (i.e., await (bag .min == ticket)) fails

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

I Extra support is required

minticket(i) =̂ 
[
critical(i)→ min(bag) = ticket(i)

]
notsame(i, j) =̂ 

[
i 6= j ∧ active(i) ∧ active(j)→ ticket(i) 6= ticket(j)
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We now require a new rule for invariant support
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Our Contributions

That’s for safety... what about liveness?



Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

1

2

3 Invariant Generation with Self-refelction
Automatic parametrized invariant generation using off-the-shelf sequential absint

4

5

6 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: A Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: A Decidable Family for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

C

B

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants
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Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N ] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

ϕ(k)

Diagram

D� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Satisfaction
(Model Checking)



The Need of Parametrized Diagrams

System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
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I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

I Unique diagram for arbitrary number of threads

I Finite and bounded number of verification conditions
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...

P [N ] : P (1)|| · · · ||P (N)

ϕ(k)

PropertyDiagram

D� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness
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|T | · |V|
How many VCs?

|T |
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Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance

I Fairness

I Satisfaction

µ(n)→ f(n)

ModelCheck(D � ϕ)
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Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

1

2

3 Invariant Generation using Self-reflection
Automatic parametrized invariant generation using off-the-shelf sequential absint

4

5

6 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: A Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: A Decidable Family for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

C

B

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

A
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Verification using LEAP

We use LEAP to verify temporal, structural and functional properties

I Mutual exclusion protocols

I Concurrent lock-coupling lists

I Concurrent lock-based queues

I Lock-free stacks

I Lock-free queues

I Skiplists with 2,3,4,5,.. levels

I Skiplists with unbounded levels (including KDE implementation)

LEAP and examples available online at

software.imdea.org/leap



LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01
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LEAP analysis time
remains insignificant
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Decision procedures perform well...
but still room for improvements



LEAP: Some Experimental Results (liveness)

#VC #solved VC single VC time(s.) DP Leap
pos num slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01
Consecution 153 144 9 2.66 0.03 4.22 0.06
Acceptance 195 132 63 1.46 0.08 15.28 0.05

Fairness 24 20 4 0.03 0.01 0.10 0.02

#VC #solved VC single VC time(s.) DP Leap
pos TLL slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01
Consecution 1550 1343 207 3.80 0.05 78.12 3.42
Acceptance 5404 4352 1052 191.61 0.12 647.04 1.61

Fairness 48 20 28 0.42 0.16 7.82 0.14

MinTicket (progress):

Concurrent List (termination):
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Conclusions

I A novel deductive framework for parametrized verification

I Designed for concurrent data structures

I Suitable for safety and liveness temporal properties

I Constructed specialized theories and decision procedures

I Implemented a tool with our verification framework

I We verified various programs and concurrent data structures

I We studied automatic generation of parametrized invariants



Future Work and Open Questions

I Relax symmetry and study process topologies

I Better invariant generation: for more data domains

I More decision procedures for more datatypes

I Implement a generic Nelson-Oppen for faster decision procedures

I Add support for real world programming languages

I Use theorem provers in combination with SMT solvers, and
generate full formal proofs

I Beyond interleaving semantics:
Weak memory models and distributed algorithms
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(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k
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Future Work

To show that S satisfies ϕ(i):

( I ) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Relax symmetry and study process topologies

(OC<) ϕ ∧ k < i ∧ τ (k) → ϕ′ forall τ , fresh k
(OC>) ϕ ∧ k > i ∧ τ (k) → ϕ′ forall τ , fresh k



Thanks!


