Temporal Deductive Verification of
Parametrized Systems

César Sanchez

IMDEA Software Institute

Joint work with Alejandro Sanchez

2nd Int'l| Workshop on Parametrized Verification Madrid, 4 Sep, 2015

The Problem

The Problem

Temporal Properties

The Problem

Temporal Properties

Concurrent Datatypes

L 4
~

The Problem

Temporal Properties

Concurrent Datatypes

L 4
~

The Problem

Temporal Properties

01
00 2
- 4
s 6 5
Concurrent Datatypes
'\{s o 49)l ;Il__l (‘E/q&]
5 |
False ° 3 T+~ h

L 4
~

The Problem

Temporal Properties

Concurrent Datatypes / '

'\'§ True 42 1 h (\/@
* N 5 —) A N
T e T B ESR— ¢

Parametrized Verification

The Problem

Temporal Properties

) 1| ?
Concurrent Datatypes ‘ 0 '

‘5 True)l ;Il_-l
AN 5 N
* v False 32 I — 15*

Parametrized Verification

Motivation

» Goal: Formal Verification (proving system correct)

» First target: concurrent data structures

» Complex data types: lists, trees, skiplists, hash-maps, etc
» Unstructured fine-grained synchronization methods

» Automation preferable but not mandatory

» Need to tackle lock-based and lock-free synchronization
» Liveness is as interesting as safety properties

» Parametrization to enable verification for all system instances

Our Approach

Our Approach

B
0t — =g —

Our Approach

B B
B i% —
NN G0
R e R

] Safety Liveness
Parametrized

Deductive
Methods

Our Approach

——— g I
B Dﬁ] P N D
Dﬁ] Dql? ﬁ“? %D
Safety Liveness
Parametrized ... Parametrized
Deductive Param.etrized Verification
Methods Invariance Diagrams

Our Approach

Parametrized
Deductive

Methods

[
/%
= o
—i0
N 1D
............. D %%D
Parametrized Invariant Generation
............................. Safety i ... Liveness
b od Parametrized
aram.etrlze Verification
Invariance

Diagrams

Our Approach

Parametrized

Parametrized

Deductive Param.etrized ; Verification
Methods Invariance Diagrams
0 Finite collection of VC
Locations Numeric Lists Queues Stacks Skiplists
Decision

Procedures

Our Approach

Parametrized
Deductive

Methods

Decision
Procedures

et —m =
N 1D
............. D %%D

Safety LiveneSS
... ,Parametrlzed
Param.etrlzed : Verification
Invariance Diagrams
0 Finite collection of VC
Locations | Numeric | Lists | Queues | Stacks | Skiplists
TL3 TSk«
TSL

Our Approach

Parametrized
Deductive

Methods

Decision
Procedures

— 1t
S aE s t:::::

0
Nlﬁl
.]
............. “ %%D
Parametrized Invariant Generation
............................. Safety i . Liveness
] Parametrized
Parametrized cee .
) : Verification
Invariance ; i
: Diagrams
0 Finite collection of VC
Locations | Numeric | Lists | | Q ueues | Stacks Sklp|IStS
TSLk
TL3
TSL

SMT Solvers (23, Yices, CVC4,...)

Our Approach

Parametrized
Deductive

Methods

Decision
Procedures

— 1t
S aE s |:

............................. Safety ot Liveness
] Parametrized
Parametrized cee .
) : Verification
Invariance ; .
: Diagrams
0 Finite collection of VC
Locations | Numeric | Lists | | Q ueues StacksSklphstS
TSL

SMT Solvers (23, Yices, CVC4,...)

Implemented in LEAP

Our Contributions

A deductive verification framework for
parametrized concurrent systems

Safety '
Parametrized |-t o Parametnzed
Deductive Paramf—:trlzed : Verification
Methods Invariance Diagrams
0 Finite collection of VC
.. Locations | Numeric | Lists | Queues | Stacks | Skiplists
Decision TL3 TSLK
Procedures TSL
SMT Solvers (23, Yices, CVC4,...)
— 7

Implemented in LEAP

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

Parametrized

Parametrized

Deductive Param.etrized Verification
Methods Invariance Diagrams
Finite collection of VC
o Locations | Numeric | Lists | | Queues | Stacks | Skiplists
Decision TL3 TSLg
Procedures TSL
SMT Solvers (23, Yices, CVC4,...)

Implemented in LEAP

Our Contributions
@ Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

(A

Parametrized
Deductive Parametrized

Methods Invariance

..

Parametrized

Verification
Diagrams

G \i/ Finite collection of VC

Locations | Numeric ' Stacks Skiplists

Decision

Procedures

SMT Solvers (23, Yices, CVC4,...)

Implemented in LEAP

Our Contributions
@ Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

@ Implementation and Evaluation of our Framework

(A

Parametrized
Deductive Parametrized

Methods Invariance

..

Parametrized

Verification

Diagrams

G \i/ Finite collection of VC

Locations | Numeric ' Stacks Skiplists

Decision

Procedures

SMT Solvers (23, Yices, CVC4,...)

G Implemented in LEAP

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

@ Implementation and Evaluation of our Framework

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Decision Procedures for Complex Data Structures

@ Implementation and Evaluation of our Framework

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

Decision Procedures for Complex Data Structures

@ Implementation and Evaluation of our Framework

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation using Abstract Interpretation

Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

@ Implementation and Evaluation of our Framework

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems
» Parametrized Invariance

Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

@ Invariant Generation using Self-reflection

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework

Verification of Concurrent Data-structures

Our verification approach

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

:

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure
@ insert() >§

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

l{[P search () >§

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

@ remowve () , §

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

:

Most General Client

Verification of Concurrent Data-structures

Our verification approach

Concurrent DataStructure

:

Most General Client

PIN]: P(L)|[---[|P(N)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Property

¥

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Property

¥

p—

LTL (

U, .

)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Safety
Property

¥

p—

LTL (O, U,

)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Safety
Property

p

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

"/

-

Safety
Property

p

Verification of Concurrent Data-structures
Safety Properties

?
PIN]: P(L)]|- - ||P(N) —

Verification of Concurrent Data-structures

Safety Properties

?
PIN]: P(L)]|- - ||P(N) —

MeEans.

forall N
P[N]F Op

Verification of Concurrent Data-structures

Safety Properties

?
PIN]: P(L)]|- - ||P(N) —

MeEans.

forall N
P[N]F Op

Verification of Concurrent Data-structures

Safety Properties

?
PIN]: P(L)]|- - ||P(N) —

MeEans.

forall N
P|N] '=[p }

/

Parametrized Property

Verification of Concurrent Data-structures

Safety Properties

?
PIN]: P(L)]|- - ||P(N) —

MeEans.

forall N
P[N]F Op

Verification of Concurrent Data-structures

Safety Properties

?
PIN]: P(L)]|- - ||P(N) —
i forall V
. P[N]FOp

Uniform Verification Problem

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:

1. © —q
2. gNT—¢q forall T
3. q—p

p

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p
S
q

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p

Non-parametrized General Invariance Rule

To show that P satisfies (p, find g¢:
1. © —q
2. gNT—¢q forall T
3. q—p
p

Why this rule does not work for parametrized systems?

Motivating Example: Mutual Exclusion Protocol

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin

1: while true do
2: noncritical
3. ticket := tick 4+ + >

' bag.add(ticket)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin
1: while true do
2: noncritical
3. ticket := tick 4+ + >
' bag.add(ticket)
\\) 4: await (bag.min == ticket)
(5: critical)
6: bag.remove(ticket)
7: end while

end procedure

Critical Section

Motivating Example: Mutual Exclusion Protocol

T,

b

global
Int tick :== 0
Set(Int) bag := ()

w0

o o R

procedure SETMUTEX
Int ticket := 0
begin

- while true do

noncritical
ticket := tick 4+ +
bag.add(ticket) >
await (bag.min == ticket)
critical
bag.remove(ticket)
end while
end procedure

{

tick

bag

Critical Section

Motivating Example: Mutual Exclusion Protocol

_> [2;

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0
begin

- while true do

noncritical)

b

o o R

ticket := tick 4+ +
< bag.add(ticket) >
await (bag.min == ticket)
critical
bag.remove(ticket)

end while

end procedure

tick

ﬁ?

bag

Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin
1: while true do
2: noncritical
_) {3 < ticket := tick + + >j
bag.add(ticket)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket)
7: end while

end procedure

tick

bag

Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin
1: while true do
2: noncritical
_) {3 < ticket := tick + + >j
bag.add(ticket)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket)
7: end while

end procedure

tick

bag

Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin
1: while true do
2: noncritical
_) {3 < ticket := tick + + >j
bag.add(ticket)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket)
7: end while

end procedure

tick

3
3

Critical Section

Motivating Example: Mutual Exclusion Protocol

N =

w0

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0
begin

- while true do

noncritical
ticket := tick + +
bag.add(ticket)

await (bag.min == ticket) |

critical
bag.remove(ticket)

- end while

end procedure

tick

3
3

Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin
1: while true do
2: noncritical
3. ticket := tick 4+ + >
' bag.add(ticket)
\\) 4: await (bag.min == ticket)
(5: critical)
6: bag.remove(ticket)
7: end while

end procedure

tick

3
3

)

{

Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket := 0

begin

1: while true do

2: noncritical

3. ticket := tick 4+ + >

' bag.add(ticket)

4: await (bag.min == ticket)
critical
bag.remove(tz'cket)j

. end while

end procedure

{

tick

3
rﬁ

bag Critical Section

Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket .= 0
begin
1: while true do

2: noncritical
ticket := tick + + >

> < bag.add(ticket)
\ 4. await (bag.min == ticket)

([5: critical)

/) 6: bag.remove(ticket)
7: end while

end procedure

mutex(i, j) = [z #+ 7 — —(critical (i) A critical(j))}

General Deductive Verification [Manna-Pnueli '95]

1. ® — mutex
2. mutex A T — mutex’ for each 7

General Deductive Verification [Manna-Pnueli '95]

® — mutex
2. mutex A 7 — mutex’ for each T gpET—

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —

General Deductive Verification [Manna-Pnueli '95]

® — mutex
2. mutex A 7 — mutex’ for each T gpET—

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —

» Consecution:
1y

General Deductive Verification [Manna-Pnueli '95]

® — mutex
2. mutex A 7 — mutex’ for each T gpET—

» |nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket[Th]) =0 A pc[Thi] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —
» Consecution:
17

@,

General Deductive Verification [Manna-Pnueli '95]

® — mutex
mutex A 7 — mutex’

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —

for each 7 gryET—

» Consecution:

11
(1)

true

nondet

General Deductive Verification [Manna-Pnueli '95]

® — mutex

mutex A 7 — mutex’ for each T gpET—

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —

» Consecution:

true

nondet

OO

ticket[Tl]/ := tick A
tick! 1= tick + 1 A
bag’ := bag U {tick}

S)

General Deductive Verification [Manna-Pnueli '95]

® — mutex

mutex A 7 — mutex’ for each T gpET—

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’&Cket[TQ] = O A\ pC[TQ] —

» Consecution:

true

nondet

OO

ticket[Tl]/ := tick A
tick! 1= tick + 1 A
bag’ := bag U {tick}

7

await(bag.min = ticket[T7])

Ex

General Deductive Verification [Manna-Pnueli '95]

® — mutex

mutex A 7 — mutex’ for each T gpET—

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket|T1] = 0 A pc[Th] =
@T2 . t’l/Cket[TQ] = O A\ pC[T2] —

» Consecution:
1y

bag/.remove(ticket[Tl];q\ false
—W—®

true

nondet

&

ticket[Tl]/ := tick A
tick! 1= tick + 1 A
bag’ := bag U {tick}

7

await(bag.min = ticket[T7])

(x—

General Deductive Verification [Manna-Pnueli '95]

® — mutex

mutex A 7 — mutex’ for each T gpET—

> Initiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket[Th]) =0 A pc[Thi] =
@T2 . t'l/Cket[TQ] = 0 A\ pC[T2] —

» Consecution: 16 VC
15 | 15

bag’ .remove (ticket[T];Q\ false bag’ .remove(ticket[TQ]g@\ false
r D—() i D)

true true

nondet nondet

&
G

ticket[T] a
tick’

tick A ticket[TQ]/ := tick A
tick + 1 A tick! 1= tick + 1 A
bag U {tick} bag’ := bag U {tick}

bag/ :

7

await(bag.min = ticket[T7])

@)
(x— (—W

await (bag.min = ticket[T9])

General Deductive Verification

» |nitiation:

Og : tick =0 A bag = ()

» Consecution:

1
bag/.remove(ticket[Tl];q\ false
—W—

true

nondet

&

7

ticket[Tl]/ := tick A
tick! 1= tick + 1 A
bag’ := bag U {tick}

1 VC

16 VC
|

bag’ .remove (ticket

® — mutex
mutex A 7 — mutex’

15

-

[TQ]@ false)@

G

true

nondet

ticket[TQ]/ := tick

tick! 1= tick

[Manna-Pnueli '95]

for eaCh T W) Threads

Or, : ticket|T1] =0 A pc[T1] =1
@T2 . ticket[Tg] =0A pC[TQ] =1

+ 1 A

bag’ := bag U {tick}

await(bag.min = ticket[T7])

(o—s) ;

await (bag.min = ticket[T9])

lo

General Deductive Verification [Manna-Pnueli '95]

® — mutex
mutex A 7 — mutex’

» [nitiation: 1 VC
O¢ : tick =0 A bag = () Or, : ticket[Th] = 0 A pc[T1] =1

Or, : ticket[T2] = 0 A pc[Tz] =1

Ory : ticket|[T3] =0 A pc[13] =1

» Consecution: lo#C 24 VC
Ty | P | T3
bag’.remove(tszet[Tl]@ false)@ bag/.remove(tszet[TQ]@ false)@) ll/)@

true true

for each 7 gryET—

nondet nondet

&
G

ticket[T] ! = tick A

ticket[TQ]/ := tick A
tick’

tick + 1 A tick! 1= tick + 1 A
bag U {tick} bag’ := bag U {tick}

lo

bag/ :

7

await(bag.min = ticket[T7]) await (bag.min = ticket[T9])

®
®
D

Parametrized Invariance

Problem

Unbounded number of verification conditions

Parametrized Invariance

Problem

Unbounded number of verification conditions

Our solution

» Specialized invariance proof rules

» Finite and bounded number of verification conditions

Parametrized Invariance exploits the similarities
of fully symetric systems

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that S satisfies (7): Initiation
(1) o o
(SC) o AT — ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

Self-consecutjon
(1) 9= v >
(SC) (P ATD — ¢ Yorall 7
(0C) o Nk#£iNTHE) — ' forall 7,fresh k

P

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(') = ¢
C) o AT — ' forall T

Om # 1 N T(k) — gqurall T, fresh k

- L Other-consecution

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

» For our example: mutex(i, j)

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

» For our example: mutex(z,5) #VC : 1

(1) ©(i,j) — mutex

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

» For our example: mutex(i, j) #VC :1 + 16

(1) ©(i,j) — mutex
(SC) mutex A 700 — mutex’ forall T
mutex A 7). — mutex’ forall T

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
»

» For our example: mutex(z,57) #VC:1 4 16 + 8 = 25

(1) ©(i,j) — mutex
(SC) mutex A 7() — mutex’ forall T
mutex A 719 — mutex’ forall T
(0C) mutex ANk #iAk#jATH — mutex’ forall 7, fresh k

Parametrized Invariance (p-inv)

» Bounded number of VC, based on program and specification

To show that § satisfies ¢(i):

(1) O — ¢

(SC) o AT = ' forall T

(0C) o ANk#iNnTH — ' forall T,fresh k
¥

Independently on #threads in the system N
> For our example: mutex(z,5) #VC:1+ 16 + 8 =@

(1) ©(i,j) — mutex
(SC) mutex A 7() — mutex’ forall T
mutex A 719 — mutex’ forall T
(0C) mutex ANk #iAk#jATH — mutex’ forall 7, fresh k

Parametrized Invariance (p-inv) is not enough

> Lets try to prove mutex using P-INV...

Parametrized Invariance (p-inv) is not enough

> Lets try to prove mutex using P-INV...

> ... transition 4 (i.e., await (bag.min == ticket)) fails

‘ — Il
Critical Section

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

Parametrized Invariance (p-inv) is not enough

> Lets try to prove mutex using P-INV...

> ... transition 4 (i.e., await (bag.min == ticket)) fails

‘ — Il
Critical Section

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

» Extra support is required
minticket(z) = O]critical(i) — min(bag) = ticket(i)]

notsame(4,7) = [O[i # j A active(i) A active(j) — ticket(i) # ticket(j)]

Parametrized Invariance (p-inv) is not enough

> Lets try to prove mutex using P-INV...

> ... transition 4 (i.e., await (bag.min == ticket)) fails

‘ — Il
Critical Section

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

» Extra support is required
minticket(z) = O]critical(i) — min(bag) = ticket(i)]

notsame(i,j) = [[z % j N active(i) A active(j) — ticket(i) # ticket(j):

We now require a new rule for invariant support

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) © — ¢

(SC) v, p> O 5 Y forall 7

(0C) Y, o> k#inTH — forall T, fresh k

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

strenghtening

(S)

(1) O = ¢

(SC) v, p> O 5 Y forall 7

(0C) Y,o> k#inT® = forall T, fresh k

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

/—> strenghtening
(e initiation

_/>

forall 7
forall 7, fresh k

(S)
(1) @ — P /—> self-consecutiol
(SC) Y, o > PG RN 90/

Do

other-consecut

-

on

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) © — ¢

(SC) v,pD> O 5 Y forall 7

(0C) ¢, p> k#iA Tk forall 7, fresh k

/ e

C) Instantiate the assumptions for self and others

Y > (A— B) whether [(/\UGS Ve N A) — B]

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) O — ¢

(SC) v,pD> O 5 Y forall 7

(0OC) 1(’,99 > k#£iA k) @’ forall 7, fresh k

/ e

C) Instantiate the assumptions for self and others
» Example: minticket and notsame to support mutex(i, j)

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) O — ¢

(SC) v,pD> O 5 Y forall 7

(0OC) 1(’,99 > k#£iA k) @’ forall 7, fresh k

/ e

C) Instantiate the assumptions for self and others
» Example: minticket and notsame to support mutex(i, j)

(S) (Ominticket A [Onotsame

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) © — ¢

(SC) v,pD> O 5 Y forall 7

(0C) ¢, p> k#iA R forall T, fresh k

/ e

C) Instantiate the assumptions for self and others

» Example: minticket and notsame to support mutex(i, j)

(S) (Ominticket A [Onotsame
(1) O(i,j7) — mutex

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) © — ¢

(SC) v,pD> O 5 Y forall 7

(0C) ¢, p> k#iA R forall T, fresh k

/ e

C) Instantiate the assumptions for self and others

» Example: minticket and notsame to support mutex(z,)

(S) (Ominticket A [Onotsame

(1) O(i,j7) — mutex
minticket(¢1) A |

notsame(tz, t3) A AT = mutexX’ Vr

..... ts}—=157} | mutex(t4, t5)

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:
O

—
@ forall 7
kAiAnTH® & o forall T, fresh k

/ e

C) Instantiate the assumptions for self and others

» Example: minticket and notsame to support mutex(z,)

(S)
(1)

(5C)

[Iminticket A [Jnotsame

O(,j7) —
i [minticket(t1) A]
A notsame(tz2, t3) A A7
oc{ty,....ts}—{i,j} mutex(t4,t5> i

A notsame(ta, t3) A
oc{ti,...,ts}—{i,5} muteX(t4, t5)

i [minticket(t1) A]
A 20)

mutex

— mutex’

— mutex’

YT

\in

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) © — ¢

(SC) v,pD> O 5 Y forall 7

(0C) ¢, p> k#iA Tk forall 7, fresh k

/ e

C) Instantiate the assumptions for self and others

» Example: minticket and notsame to support mutex(z,)

(S)
(1)

(5C)

(0C) { /\
oce{ty,...

[Iminticket A [Jnotsame

_] ©(i,7)
minticket(¢1) A
A notsame(tz2, t3) A A7
_UE{tl ----- ts}—{t,5} i mutex(t4, t5) o i

A notsame(tz2,t3) A
oc€{t1,..., ts }—{i,5}

minticket(t1) A
notsame(tz,t3)A | Ak#iANk#jATH
mutex(ta4,ts) ;

mutex(t4, ts)

[minticket(t1) A]
A)

t5}_\{iajak}

— mutex

— mutex’ V7

— mutex’ V7

— mutex’ V7

Parametrized Invariance with Support (sp-inv)

To show that S satisfies (7). Find ¢ (w) with:

(S) Oy

(1) O — ¢

(SC) v,pD> O 5 Y forall 7

(0OC) 1(’,99 > k#£iA k) @’ forall 7, fresh k

/ e

C) Instantiate the assumptions for self and others

Problem

Sometimes we have invariant circular dependency

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Oy, (v) A Oy, (wW):

(1) O — iy

(SGCi) wi,p; > & 5l forall 7, forall t € ¥

(SGCj) wi,p; > T forall 7, forall t € w

(0C) wi,o;i> ANk#azAT® S ¢l forall 7, fresh k ¢ v
Trev

(0C)) wi,o;> N k#zArH - ©; forall T, fresh k ¢ w

TEW

Llps A Oy

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): /éinitiation
(1) Co = vine
(SGCi) wi,p; > AN Y forall 7, forall t € ¥
(SGCj) wi,p; > T forall 7, forall t € w
(0C) wi,o;i> ANk#azAT® S ¢l forall 7, fresh k ¢ v
Trev
(0C)) wi,o;> N k#zArH - ©; forall T, fresh k ¢ w
TeEWw
Llps A Oy

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): |n|t|at|on

self-consecution
©0; N V)
forall 7, forall t € ©
D forall 7, forall t € w
forall 7, fresh k ¢ v

©)

)
(SCi) (@i, 05 > ()
(SCi) i, 05 >)

)

)

vi,o; > N kFx ATV

TEV

wi, 5> N k#aznrh

TEW

Llps A Oy

IR

gpj forall 7, fresh k ¢ w

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies y; (V) A Oy, (W): /éinitiation
self-consecution

(SGCi) wi,p; > & 5l forall 7, forall t € ¥

(SGCj) wi,p; > r(t) — @] forall 7, forall t € w

(0C) /en,0; > ANk#axzAT® o forall 7, fresh k ¢ v
TEV

(0C) \wi,o;> N k#zAr® - ©; forall T, fresh k ¢ w
TEW

Ui ADg; \=s others-consecution

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): /éinitiation
self-consecution

(SGCi) wi,p; > & 5l forall 7, forall t € ¥

(SGCj) wi,p; > T forall 7, forall t € w

(0C) wi,o;i> ANk#azAT® S ¢l forall 7, fresh k ¢ v
TEV

(0C)) wi,o;> N k#zArH - ©; \ forall T, fresh k ¢ w
TEW

Lo A De; \=s others-consecution

» A generalization of G-INV is a proof graph

>-[2< ‘]
I

I+ €

1
L—>Ig

4

\
4

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): /éinitiation
self-consecution

(SGCi) wi,p; > & 5l forall 7, forall t € ¥

(SGCj) wi,p; > T forall 7, forall t € w

(0C) wi,o;i> ANk#azAT® S ¢l forall 7, fresh k ¢ v
TEV

(0C)) wi,o;> N k#zArH - ©; \ forall T, fresh k ¢ w
TEW

Lo A De; \—> others-consecution

» A generalization of G-INV is a proof graph

>12< ‘]
I

I+ €

1
L—>13
— Theorem

Every node is invariant if every node is either:
» an inductive Iinvariant, or
» has an incident edge and all VCs are valid

4

\
4

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): /éinitiation
self-consecution

(SGCi) @i, p; > & 5l forall 7, forall t € ¥

(SGj) wi,p; > T forall 7, forall t € w

(0C) wi,oi> ANk#azAT® S ¢l forall 7, fresh k ¢ v
TEV

(0C) i, N k#zAnr® — ©; \ forall T, fresh k ¢ w
TEW

Lo A De; \—> others-consecution

minticket ¢---r---eemseenees notsame
A

RREREEEEEE activelow -----------

— Theorem
Every node is invariant if every node is either:

» an inductive invariant, or

» has an incident edge and all VCs are valid

Our Contributions

That's for safety... what about liveness?

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
»@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation with Self-refelction

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Property

¥

p—

LTL (

U, .

)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
Property

¥

p—

LTL (O, U,

)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
Property

o)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
P Property

— H(h)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
Diagram Property
D Sp(lf)

Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
Diagram Property
5 D 5 p*)

Verification Conditions: Satisfaction

> [nitiation (Model Checking)
» Consecution

» Acceptance

» Fairness

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T%)

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin

1: loop
2: noncritical
3. < ticket := avail + + >

' bag.add(ticket, myld)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket, myld)
7: end loop

end procedure

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T%)

Spec: (ch1 =3 = Opep, = 5)

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T%)

Spec: (ch1 =3 = Opep, = 5)

[Tl not interestedj

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

EI& notinterested]

[T interested Aj

5)

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:Tl not interestedj

i}

:5)

: T interested j

i}

LTl has min tickeﬂ

|

LTQ has min tickeﬂ

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX
int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)
@ critical
6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:Tl not interestedj

i}

:5)

: T interested j

i}

LTl has min tickei

r)

I enters
| critical section

_J

|

LTQ has min tickeﬂ

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T%)

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX
int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)
@ critical
6: bag.remove(ticket, myld)
7: end loop
end procedure

(per, =3 — Opey, =5)

:Tl not interestedj

i}

: T interested

i}

) |

LTl has min tickei LTQ has min tickeﬂ

s

I enters
| critical section

—

_J

i}

s

17 leaves
critical section

—

-\

_J

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:5)

:Tl not interested}

i}

r

T interested j

i}

LTl has min tickei

-

r)

I enters
| critical section

i}

17 leaves
critical section

_J

()

_ _J

|

LTQ has min tickeﬂ

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:5)

:Tl not interested}

i}

r

T interested j

i}

LTl has min tickei

-

r)

I enters
| critical section

i}

17 leaves

_J

-\

critical section

_ _J

|

FQ has min tickei

r

T5 enters

critical section |

_

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ < ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:5)

:Tl not interestedj(

i}

r

T interested j

i}

LTl has min tickei

-

r)

I enters
| critical section

i}

17 leaves

_J

-\

critical section

_ _J

|

FQ has min tickei

r

> enters
critical section |

i}

5 leaves

_

r

critical section

_ _J

The Need of Parametrized Diagrams

System:

Spec:

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin
1: loop
2: noncritical
@ ticket := avail + + >
bag.add(ticket, myld)
<‘ 4: await (bag.min == ticket)

@ critical

6: bag.remove(ticket, myld)
7: end loop
end procedure

SETMUTEX (T})||[SETMUTEX(T5)

(per, =3 = Opep,

:5)

:Tl not interestedj(

i}

r

T interested j
4
|71 has min tickeﬂ%j

s

-

—

I enters
| critical section

i}

17 leaves

_J

-\

critical section

_ _J

|

FQ has min tickei

r

> enters
critical section |

i}

5 leaves

_

r

critical section

_ _J

The Need of Parametrized Diagrams

System:

SETMUTEX (T})||[SETMUTEX(T5)

Spec:

(per, =3 = Opep,

:5)

:Tl not interested}

i}

T interested j

i}

-

—

I enters
| critical section

i}

17 leaves
critical section

_ _J

_J

-\

LTl has min tickeﬂ%j

|

FQ has min tickei

r

> enters
critical section |

i}

5 leaves

_

critical section

_ _J

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T?)||SETMUTEX(T3)

Spec:

(per, =3 — Opey, =5)

:Tl not interested}
(¢ j
| 17 interested |
i)
|71 has min tickeﬂ%j
[[} enters)
| critical section |
)
T} leaves)
| critical section |

|

FQ has min tickei

r

> enters
critical section |

i}

5 leaves

_

critical section

_ _J

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T?)||SETMUTEX(T3)

Spec: (ch1 =3 = Opep, = 5)
:Tl not interestedj()
(¢ j
Jj | 17 interested |
I |
|73 has min ticket | rHLTl has min tickeﬂ%j | 7> has min ticket
[[; enters [[} enters) ([, enters
| critical section | | critical section | | critical section |
,) - r) - r)
5 leaves T leaves 'I5 leaves
| critical section | | critical section | | critical section |

The Need of Parametrized Diagrams

System: SETMUTEX(T})||SETMUTEX(T?)||SETMUTEX(T3)

Spec: (ch1 =3 = Opep, = 5)
:Tl not interestedj()
(¢ j
Jj | 17 interested |
I |
T3 has min ticket | rHLTl has min tickeﬂ%j | 7> has min ticketlHj
i)
[I3 enters [[} enters) [[5 enters)
| critical section | | critical section | | critical section |
,) - r) - r)
5 leaves T leaves 'I5 leaves
| critical section |) | critical section | | critical section |
- : | _J
(- : _J

(- _J

Solution: Parametrized Verification Diagrams

Problem

» Not a single diagram for arbitrary number of threads
» Unbounded number of verification conditions

Solution: Parametrized Verification Diagrams

Problem

» Not a single diagram for arbitrary number of threads
» Unbounded number of verification conditions

Our solution

» Unique diagram for arbitrary number of threads

» Finite and bounded number of verification conditions

Parametrized Verification Diagrams exploit
symmetry

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Nodes

(@)
®

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Initial Node

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Edges

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Node labeling

(@) p(a) = pe(i) = 1

(b) u(b) i) =2 A isMin(z)

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Edge labeling

Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

Ranking functions

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

_)
Parametrized VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

7]) represents

g
_ _J N

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

7]) represents

e
_ _J N

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

7]) represents
0 D @
T1[’i]
Q 71 [1] 71 [M]
o (0 @
_ _J N _J

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

©

72[i]
7]) represents
jC ’ ®
71 [1]
@ i [1) 1 [M]
_ . __

_J

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

©

T2 [’L]

m\t) represents
a

T1 [’L]

®

L J

_)
Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

7]) represents
jo >

_)
Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

7]) represents
jo >

_)
Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

) represents
ifa] ===
T1 [’L]

_)
Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

For M threads

) represents
ifa] ===
T1 [’L]

_ i,
Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

A PVD abstracts all instantiations of a parametric system

For M threads

To [4]

(]

) represents
ifa] ===
T1 [’L]

—®

L J

_ i,
Parametrized VD General VD

Verification Conditions for Parametrized Diagrams

Diagram Property

qp e @ - D = ()

PIN]: P(L)][---[|P(N)

Verification Conditions:
» Initiation

» Consecution

» Acceptance

» Fairness

Verification Conditions for Parametrized Diagrams

» Initiation O — u(Np)

Verification Conditions for Parametrized Diagrams

» Initiation

» Consecution: Foreveryn € N and 7€ T,

[V u(n) AT(i) = p(m) J

n—-m

Verification Conditions for Parametrized Diagrams

» Initiation

» Consecution: Foreveryn € N and 7€ T,

[VMMM@%MW)}

n—-m

Self-Consecution

Vo opn) AT(i) = p(m’) for all i € Voc(n, m)

n—-m

Verification Conditions for Parametrized Diagrams

» Initiation

» Consecution: Foreveryn € N and 7€ T,

[VMMM@%MW)}

n—-m

Self-Consecution

Vo opn) AT(i) = p(m’) for all i € Voc(n, m)

n—-m

Others-Consecution

Vo oum)AT(G)Ag#Fi — p(m) for fresh 57 ¢ Voc(n, m)

n—-m

Verification Conditions for Parametrized Diagrams

» Initiation

» Consecution: Foreveryn € N and 7€ T,

[VMMM@%MW)}

n—-m

How many VCs?

Self-Consecution fT |V
Vo owp(n) AT(E) — p(m’) f

or all i € Voc(n,m)

n—-m
7]
Others-Consecution
Vo oum)AT(G)Ag#Fi — p(m) for fresh 57 ¢ Voc(n, m)

n—-m

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance: For every (B, G,) and all edges n —. m:

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance: For every (B, G,) and all edges n —. m:

Self-Acceptance (for all ¢ € Voc(n, m))
(u(n) A7) Ap(m')) = d(n) > d(m) if ec B

(u(n) A7) Ap(m')) — d(n) > d(m) ifec B\ (BUG)

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance: For every (B, G,) and all edges n —. m:

Self-Acceptance (for all ¢ € Voc(n, m))

(w(n) A7(2) A p(m')) = o(n) > o(m) ife € B

(w(n) A7) Ap(m')) = o(n) = o(m) ife € B\ (BUG)
Others-Acceptance (for fresh i ¢ Voc(n,m))

(u(n) AT(F) NiF# G Ap(m')) = d(n) > 0o(m) ifeeB

((n) AT(G) Ni# G Ap(m')) —d6(n) = o(m) ifee B\ (BUG)

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance

> Fairness For each n —. m with n(e) = 7(2)

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance

> Fairness For each n —. m with n(e) = 7(2)

p(n) = En(7(i))

p(n) AT(i) = p(m’)

Verification Conditions for Parametrized Diagrams

» [nitiation
» Consecution

» Acceptance

» Fairness

» Satisfaction

u(n) — f(n)

ModelCheck(D F ¢)

Mutual Exclusion Algorithm (revisited)

p(k) = O(pc(k) =3 = Opc(k) =5)

Mutual Exclusion Algorithm (revisited)

p(k) = O(pc(k) =3 = Opc(k) =5)

LTl not interestedj(

|

[Ty interestedj m
@H has min tickeﬂ(R GFQ has min tickeﬂ
T, enters T, enters
critical section critical section

T leaves | (I5 leaves
critical section | critical section

Mutual Exclusion Algorithm (revisited)

p(k) = O(pc(k) =3 = Opc(k) =5)

L k not interestedj(

|

[k interested j

Ck has min tickeﬂ(
k enters
critical section

k leaves
critical section

GFQ has min tickeﬂ

T, enters
critical section

T5 leaves]

| critical section

Mutual Exclusion Algorithm (revisited)

p(k) =

(pc(k) = 3 — Ope(k) = 5)

L k not interestedj(
| ()

[k interested j

Tg(k

Ck has min tickeﬂ()
k enters
critical section

k leaves |
critical section

Ct has min tickeﬂ

t enters
critical section

t leaves

| critical section |

Mutual Exclusion Algorithm (revisited)

p(k) =

(pc(k) = 3 — Ope(k) = 5)

L k not interestedj(
| ()

[k interested j

Tg(k

Ck has min tickeﬂ()
k enters
critical section

k leaves |
critical section

¢ minTid(bag) =t N
t#k ANpclk) =4

Ct has min tickeﬂ

t enters
critical section

t leaves

| critical section |

Mutual Exclusion Algorithm (revisited)

p(k) = O(pc(k) =3 = Opc(k) =5)

L k not interestedj(

| RS
[k interested) ™)
minTid(bag) = k t minTid(bag) =t N
73(k t#k Apc(k) =4
Ck has min tickeﬂ() Ct has min tickeﬂ
k enters t enters
critical section critical section
k leaves \ (t leaves
critical section | critical section |

Mutual Exclusion Algorithm (revisited)

p(k) = O(pc(k) =3 = Ope(k) = 5)
[pc(k) I 1,2,7 K
7’3(/€)

[pc(k) =3 j m

minTid(bag) = k minTid(bag) =t N
7s(k t#k Apclk)=4
76(t)

[pck) =4 ¥ - [pc)=4 |
74(k) l74(t)

L pc(k) = 5] L pe(t) = 5]
Tg,(ki l75(t)

e ! | pclt) =6 |mlt

Mutual Exclusion Algorithm (revisited)

= O(pc(k) =3 = Opc(k) = 5)

[pc(k) =1,2,7 §

B, G ¢ : lower(bag, ticket(k))

| (k)

[pc(k) =3 j m

minTid(bag) = k minTid(bag) =t N

7s(k t#k Apclk)=4
T6 (t)

[pck) =4 ¥ - [pc)=4 |

T4(k) l74(t)
[pc(k) = 5] L pe(t) = 5]

Tg,(ki l75(t)
[pc(k) =6] N (L pc(t) =6 f«s(t(_)

Mutual Exclusion Algorithm (revisited)

pk) =00(p» =< ¢)
[true ¥

|
{ p) ™

C true [2 Cﬁ true

l |
[q] L true
l |

[true] . { true

Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
@ Parametrized Verification Diagrams

@ Invariant Generation using Self-reflection

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework

LEAP: Structure

LEAP

LEAP: Structure

N
Program

LEAP

LEAP: Structure

Program

AN

—>[Program Parserj

LEAP

LEAP: Structure

Program

AN

—>[Program Parser]—)[Transition System Generatorj

LEAP

LEAP: Structure

AN

Program

——>[Program Parser]—)[Transition System Generatorj

2

£

Specs

LEAP

LEAP: Structure

AN

Program

——>[Program Parser]—)[Transition System Generatorj

) ——>[Formula Parser j

Z)

£

Specs

LEAP

LEAP: Structure

—
Program ;:_ ——>[Program Parser]—)[Transition System Generatorj
Elh \——>[Formula Parser]
[D
Specs So
A
3
/
Proof [
graph ¢

LEAP

LEAP: Structure

—
Program ;:_ ——>[Program Parser]—)[Transition System Generatorj
Elh \——>[Formula Parser]
[D
Specs So
A
3
/
Proof [
eraph ¢ ——>[Graph Parser j

LEAP

LEAP: Structure

AN

Program ——>[Program Parser]—)[Transition System Generatorj

Elh \——>[Formula Parser]

D
Specs So

gPrr;):}f gh _—>[Graph Parser j

PVD @

LEAP

LEAP: Structure

AN

Program

——>[Program Parser]—)[Transition System Generatorj

Elh \——>[Formula Parser]

D
Specs So

gPrr::; 3 _—>[Graph Parser j

PVD @ ——>[Diagram Parser]

LEAP

LEAP: Structure

AN

Program ——>[Program Parser]—)[Transition System Generatorj

—>[Formula Parser jﬁ

D
Specs So

1 T)

Parametrized
Invariance

gPrr:;;: 3 _—>[Graph Parser]—)

VC Generator
Parametrized

Verification
Diagrams |

PVD @ ——>[Diagram Parserj—)

LEAP

LEAP: Structure

AN

Program ——>[Program Parser]—)[Transition System Generatorj

—>[Formula Parser jﬁ

D
Specs So

1 T)

Parametrized
Invariance

gPrr:;;: 3 _—>[Graph Parser]—)

VC Generator
Parametrized

Verification
Diagrams |

PVD @ ——>[Diagram Parserj—)

0

t Decision Procedures

LEAP

LEAP: Structure

AN

Program ——>[Program Parser]—)[Transition System Generatorj

—>[Formula Parser jﬁ

D
Specs So

1 T)

Parametrized
Invariance

gPrr:;;: 3 _—>[Graph Parser]—)

VC Generator
Parametrized

Verification
Diagrams |

PVD @ ——>[Diagram Parser]—)

)
Decision Procedures
Pos :Skiplists: Lists + Num
))

LEAP LYices 73 ECVC4J

LEAP: Structure

—_
Program ;:_ ——>[Program Parser]—)[Transition System Generatorj
Elh \——>[Formula Parserjﬁ
— (VCi
Specs So N
Ss)
3
)) N \/I T
Proof Y ' Parametrized
graph ¢ [raph Tarser j ' |nvariance
VC Generator >
_ + Parametrized
PVD @ ——)[Dlagram Parserj—) E Verification
- . Diagrams |
! y
Decision Procedures ‘
Pos :Skiplists: Lists + Num
T T
LEAP L Yices | /3 '+ CV(C4 J

LEAP: Structure

—_
Program ;:_ ——>[Program Parserj—)[Transition System Generatorj
Elh \——>[Formula Parserjﬁ
— (VC1
Specs So N
? VC3 X
3 S0O-CF O
) (= v:) counter example
Proof BG Parametrized
graph ¢ [raph Tarser j ' |nvariance
VC Generator >
_ + Parametrized
PVD @ ——)[Dlagram Parserj—) E Verification
- . Diagrams |
! y
Decision Procedures ‘
Pos :Skiplists: Lists + Num
T T
LEAP L Yices ! /3 '+ CVC4 J

LEAP: Structure

Program

Specs

Proof
graph

PVD

AN

—>[Program Parserj—)[Transition System Generatorj

LEAP

—>[Formula Parser jﬁ

%[Graph Parser j—)

—>[Diagram Parserj—)

VC Generator

Parametrized
Invariance

B

Diagra

Parametrized
Verification

ms |

0

Decision Procedures

W

(VCiq
VCo

VCs X
SO-CF O,

counter example

VCy

VCs X
SO-CF O,

counter example

VCeg

K VCr

Verification using LEAP

We use LEAP to verify temporal, structural and functional properties

Mutual exclusion protocols
Concurrent lock-coupling lists
Concurrent lock-based queues

Lock-free stacks

L ock-free queues

Skiplists with 2,3,4,5,.. levels

vV v v.v v v YV

Skiplists with unbounded levels (including KDE implementation)

LEAP and examples available online at

software.imdea.org/leap

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 oo 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

[
formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 | funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 | funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 | funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 | funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 00 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 oo 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 | funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 00 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 | order 0 | 2531 || 2474 | 57 o0 Tiges s || 6.75
21 | mutex 2 28 26 | 2 0.32 LEAP analysis time 0.01
22 minticket 1 19 18 1 0.04 0.01
23 notsame 2 28 26 2 0.13 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 Decisi d f Il 18.17 0.18 0.23
7 funSchiin | but still room for improvements 304 0 0F 008
8 funSchins 1 1.91 0.03 0.08
9 funSchRem 1 2.60 0.04 0.10
10 | funSearch 1 1.57 0.01 0.34
11 | funlnsert 1 0.01 0.01 0.22
12 | funRemove 1 0.95 0.01 0.24
13 skiplists 0 154 92 62 00 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 00 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 l 0.01 0.01 0.01

LEAP: Some Experimental Results (liveness)

MinTicket (progress):

#VC #-solved VC single VC time(s.) LEAP
pos num slowest ~ average time(s) time(s)
Initiation 1 0 1 0.01
Consecution 153 144 9 0.06
Acceptance 195 132 63 0.05
Fairness 24 20 4 0.02
Concurrent List (termination):
#VC #solved VC single VC time(s.) LEAP
pos TLL slowest average time(s) time(s)
Initiation 1 0 1 0.01
Consecution 1550 1343 207 3.42
Acceptance 5404 4352 1052 191.61 647.04 1.61
Fairness 48 20 28 0.14

Published Results

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation using Abstract Interpretation

Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

ACTA @ Parametrized Invariance
2015 Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation using Abstract Interpretation

Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS

2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

ICFEM
2010

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS

2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

D
ATVA

2014

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework

Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

D
ATVA

2014

@ Implementation and Evaluation of our Framework ;ﬁj\

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

Conclusions

» A novel deductive framework for parametrized verification

» Designed for concurrent data structures

» Suitable for safety and liveness temporal properties

» Constructed specialized theories and decision procedures

» We studied automatic generation of parametrized invariants

» Implemented a tool with our verification framework

» We verified various programs and concurrent data structures

Future Work and Open Questions

>

Relax symmetry and study process topologies

Better invariant generation: for more data domains

Beyond interleaving semantics:
Weak memory models and distributed algorithms

More decision procedures for more datatypes
Implement a generic Nelson-Oppen for faster decision procedures
Use theorem provers in combination with SMT solvers, and

generate full formal proofs

Add support for real world programming languages

Future Work

» Relax symmetry and study process topologies

To show that § satisfies ¢(i):

(1) O = ¢
(SC) o AT = ' forall T
(0C) o ANk#iNnTH — ' forall T,fresh k

P

Future Work

» Relax symmetry and study process topologies

To show that § satisfies ¢(i):

(') = ¢
(S o AT = gp forall T

© /\ﬁ/\ k) — ' forall T,fresh k

P

Future Work

» Relax symmetry and study process topologies

To show that § satisfies ¢(i):

(l) = ¢
(S o ANTH — gp forall 7

© /\@/\ k) — ' forall T,fresh k

/7 Oy

(0C.) pANkE<inT®F) — & forall T,fresh k
(0Cs) o Ak>inTHF) — & forall T, fresh k

Thanks!

