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Motivation

» Goal: Formal Verification (proving system correct)

» First target: concurrent data structures

» Complex data types: lists, trees, skiplists, hash-maps, etc
» Unstructured fine-grained synchronization methods

» Automation preferable but not mandatory

» Need to tackle lock-based and lock-free synchronization
» Liveness is as interesting as safety properties

» Parametrization to enable verification for all system instances
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@ Deductive Verification Techniques for Parametrized Systems
» Parametrized Invariance

Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

@ Invariant Generation using Self-reflection

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework
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Why this rule does not work for parametrized systems?
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Motivating Example: Mutual Exclusion Protocol

global
Int tick :== 0
Set(Int) bag := ()

procedure SETMUTEX
Int ticket .= 0
begin
1: while true do

2: noncritical
ticket := tick + + >

> < bag.add(ticket)
\ 4. await (bag.min == ticket)

([ 5: critical )

/) 6: bag.remove(ticket)
7: end while

end procedure

mutex(i, j) = [z #+ 7 — —(critical (i) A critical(j))}
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Problem

Unbounded number of verification conditions

Our solution

» Specialized invariance proof rules

» Finite and bounded number of verification conditions

Parametrized Invariance exploits the similarities
of fully symetric systems
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To show that § satisfies ¢(i):
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Independently on #threads in the system N
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Parametrized Invariance (p-inv) is not enough

> Lets try to prove mutex using P-INV...

> ... transition 4 (i.e., await (bag.min == ticket)) fails

‘ — Il
Critical Section

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

» Extra support is required
minticket(z) = O]critical(i) — min(bag) = ticket(i)]

notsame(i,j) = [ [z % j N active(i) A active(j) — ticket(i) # ticket(j):

We now require a new rule for invariant support
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To show that S satisfies (7). Find ¢ (w) with:
O

—
@ forall 7
kAiAnTH® & o forall T, fresh k

/ e

C) Instantiate the assumptions for self and others

» Example: minticket and notsame to support mutex(z, )
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Problem

Sometimes we have invariant circular dependency
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Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies Ty; () A Op; (w): /éinitiation
self-consecution

(SGCi) @i, p; > & 5l forall 7, forall t € ¥

(SGj)  wi,p; > T forall 7, forall t € w

(0C) wi,oi> ANk#azAT® S ¢l forall 7, fresh k ¢ v
TEV

(0C) i, N k#zAnr® — ©; \ forall T, fresh k ¢ w
TEW

Lo A De; \—> others-consecution

minticket ¢---r---eemseenees notsame
A

RREREEEEEE activelow -----------

— Theorem
Every node is invariant if every node is either:

» an inductive invariant, or

» has an incident edge and all VCs are valid




Our Contributions

That's for safety... what about liveness?



Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
»@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation with Self-refelction

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework
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Verification of Concurrent Data-structures

Our verification approach

Most General Client

Concurrent DataStructure

{

!

PIN]: P(L)|[---[|P(N)

:

Liveness
Diagram Property
5 D 5 p*)

Verification Conditions: Satisfaction

> [nitiation (Model Checking)
» Consecution

» Acceptance

» Fairness



The Need of Parametrized Diagrams

System:  SETMUTEX(T})||SETMUTEX(T%)

global
int avail := 0
set(int, tid) bag := ()

procedure SETMUTEX

int ticket
begin

1: loop
2: noncritical
3. < ticket := avail + + >

' bag.add(ticket, myld)
4: await (bag.min == ticket)
5: critical
6: bag.remove(ticket, myld)
7: end loop

end procedure
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Solution: Parametrized Verification Diagrams

Problem

» Not a single diagram for arbitrary number of threads
» Unbounded number of verification conditions

Our solution

» Unique diagram for arbitrary number of threads

» Finite and bounded number of verification conditions

Parametrized Verification Diagrams exploit
symmetry
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Parametrized Verification Diagrams: Sketch

» PVDs are an extension of GvD

» Includes de notion of boxes

A PVD abstracts all instantiations of a parametric system

For M threads
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Verification Conditions for Parametrized Diagrams

Diagram Property

qp e @ - D = ()

PIN]: P(L)][---[|P(N)

Verification Conditions:
» Initiation

» Consecution

» Acceptance

» Fairness
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» [nitiation
» Consecution

» Acceptance

> Fairness For each n —. m with n(e) = 7(2)

p(n) = En(7(i))

p(n) AT(i) = p(m’)
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» [nitiation
» Consecution

» Acceptance

» Fairness

» Satisfaction

u(n) — f(n)

ModelCheck(D F ¢)
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pk) =00( p» =< ¢ )
[ true ¥

|
{ p ) ™

C true [ 2 Cﬁ true

l |
[ q ] L true
l |

[ true ] . { true




Our Contributions

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
@ Parametrized Verification Diagrams

@ Invariant Generation using Self-reflection

Decision Procedures for Complex Data Structures
@ TL3: A Decidable Theory for Concurrent Lists

@ TSLk: A Decidable Family for Concurrent Bounded Skiplists

@ TSL: A Decidable Theory for Skiplists with Arbitrary Levels

@ Implementation and Evaluation of our Framework
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Verification using LEAP

We use LEAP to verify temporal, structural and functional properties

Mutual exclusion protocols
Concurrent lock-coupling lists
Concurrent lock-based queues

Lock-free stacks

L ock-free queues

Skiplists with 2,3,4,5,.. levels

vV v v.v v v YV

Skiplists with unbounded levels (including KDE implementation)

LEAP and examples available online at

software.imdea.org/leap




LEAP:

Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx | F#vc pos | dp time(s.) time(s.) slowest | average time(s.)
1 list 0 61 38 23 o0 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 00 2.11 0.61 0.01 0.59
5 region 1 121 95 26 00 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12
7 funSchLin 1 121 97 24 00 6.29 3.04 0.05 0.08
8 funSchlns 1 121 93 28 o0 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 00 5.40 2.60 0.04 0.10
10 | funSearch 1 208 198 10 00 3.54 1.57 0.01 0.34
11 funlnsert 1 208 200 8 00 0.50 0.01 0.01 0.22
12 | funRemove 1 208 200 8 00 1.41 0.95 0.01 0.24
13 skiplists 0 154 92 62 oo 1221.97 776.45 15.27 0.45
14 regions 0 124 97 27 00 27.50 17.36 0.34 0.58
15 nexts 0 84 65 19 00 0.67 0.09 0.01 0.20
16 orders 0 84 59 25 00 9.66 7.80 0.10 1.31
17 skiplist 0 560 532 28 oe) 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 00 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 00 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 o0 11.19 2.35 0.84 6.75
21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01
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23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01
24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 l 0.01 0.01 0.01




LEAP: Some Experimental Results (liveness)

MinTicket (progress):

#VC #-solved VC single VC time(s.) LEAP
pos  num slowest ~ average time(s) time(s)
Initiation 1 0 1 0.01
Consecution 153 144 9 0.06
Acceptance 195 132 63 0.05
Fairness 24 20 4 0.02
Concurrent List (termination):
#VC #solved VC single VC time(s.) LEAP
pos TLL slowest  average time(s)  time(s)
Initiation 1 0 1 0.01
Consecution 1550 1343 207 3.42
Acceptance 5404 4352 1052 191.61 647.04 1.61
Fairness 48 20 28 0.14




Published Results

@ Deductive Verification Techniques for Parametrized Systems

@ Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation using Abstract Interpretation

Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

ACTA @ Parametrized Invariance
2015 Deductive proof rules for concurrent parametrized invariants

@ Parametrized Verification Diagrams

Diagram based verification for concurrent parametrized liveness properties

@ Invariant Generation using Abstract Interpretation

Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS

2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

ICFEM
2010

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS

2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

D
ATVA

2014

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels

@ Implementation and Evaluation of our Framework



Published Results

@ Deductive Verification Techniques for Parametrized Systems

D
ACTA

2015

D
TIME

2014

SAS
2012

®
@
®

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Decision Procedures for Complex Data Structures

D
ICFEM

2010

D
NFM

2011

D
ATVA

2014

@ Implementation and Evaluation of our Framework ;ﬁj\

TL3: Decidable Theory for Concurrent Lists

A Theory and decision procedure for concurrent data structures of the shape of a list

TSLk: Decidable Theories for Concurrent Bounded Skiplists

Theories and decision procedures for concurrent skiplists of at most K levels

TSL: A Decidable Theory for Skiplists with Arbitrary Levels

Theory and decision procedure for skiplists with unbounded many levels




Conclusions

» A novel deductive framework for parametrized verification

» Designed for concurrent data structures

» Suitable for safety and liveness temporal properties

» Constructed specialized theories and decision procedures

» We studied automatic generation of parametrized invariants

» Implemented a tool with our verification framework

» We verified various programs and concurrent data structures



Future Work and Open Questions

>

Relax symmetry and study process topologies

Better invariant generation: for more data domains

Beyond interleaving semantics:
Weak memory models and distributed algorithms

More decision procedures for more datatypes
Implement a generic Nelson-Oppen for faster decision procedures
Use theorem provers in combination with SMT solvers, and

generate full formal proofs

Add support for real world programming languages
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Future Work

» Relax symmetry and study process topologies
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