
Temporal Deductive Verification of
Parametrized Systems

Joint work with Alejandro Sanchez

2nd Int’l Workshop on Parametrized Verification Madrid, 4 Sep, 2015

César Sánchez

IMDEA Software Institute

The Problem

The Problem

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

Temporal Properties

The Problem

Concurrent Datatypes

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

Temporal Properties

The Problem

Concurrent Datatypes

True

False

42

5

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

32

Temporal Properties

The Problem

Concurrent Datatypes

True

False

42

5

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

32

Temporal Properties

The Problem

Concurrent Datatypes

Parametrized Verification

True

False

42

5

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

32

Temporal Properties

The Problem

Concurrent Datatypes

Parametrized Verification

True

False

42

5

0

3

1
2

4
6 5

∞
0

2
1

3
4

5
6

∞

32

Temporal Properties

Motivation

I First target: concurrent data structures

I Goal: Formal Verification (proving system correct)

I Liveness is as interesting as safety properties

I Parametrization to enable verification for all system instances

I Unstructured fine-grained synchronization methods

I Need to tackle lock-based and lock-free synchronization

I Complex data types: lists, trees, skiplists, hash-maps, etc

I Automation preferable but not mandatory

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Safety Liveness

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Parametrized
Verification
Diagrams

Safety Liveness

Parametrized
Invariance

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Parametrized
Verification
Diagrams

Safety Liveness

Parametrized Invariant Generation

Parametrized
Invariance

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

Parametrized Invariant Generation

Parametrized
Invariance

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Parametrized Invariant Generation

Parametrized
Invariance

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL
SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

Our Approach

0

3

1
2

4
6 5

∞

0

2
1

3
4

5
6

∞

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Implemented in LEAP

SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

Our Contributions

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Implemented in LEAP

SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

A deductive verification framework for
parametrized concurrent systems

Our Contributions

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Implemented in LEAP

SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

Deductive Verification Techniques for Parametrized SystemsA

A

Our Contributions

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Implemented in LEAP

SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

A

B

A

B

Our Contributions

Parametrized
Deductive
Methods

Decision
Procedures

Parametrized
Verification
Diagrams

Safety Liveness

Finite collection of VC

Locations Numeric Lists StacksQueues Skiplists

TL3
TSLK

TSL

Implemented in LEAP

SMT Solvers (Z3, Yices, CVC4,...)

Parametrized Invariant Generation

Parametrized
Invariance

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

A

B

C

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1 Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Self-reflection
Automatic parametrized invariant generation using off-the-shelf sequential absint

4

5

6 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: A Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: A Decidable Family for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

C

B

Verification of Concurrent Data-structures

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Our verification approach

insert()

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Our verification approach

search()

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Our verification approach

remove()

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Property

ϕ

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Property

LTL (,,U ,. . .)

ϕ

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Safety
Property

LTL (,,U ,. . .)

ϕ

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Safety
Property

p

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Safety
Property

� p
?

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

Safety Properties

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

means:

forall N
P [N] � p

Safety Properties

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

means:

forall N
P [N] � p (k1, k2)

Safety Properties

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

means:

forall N
P [N] � p (k1, k2)

Safety Properties

Parametrized Property

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

means:

forall N
P [N] � p
. forall k1, k2 : [N]

(k1, k2)

Safety Properties

Verification of Concurrent Data-structures

P [N] : P (1)|| · · · ||P (N) � p
?

means:

forall N
P [N] � p
. forall k1, k2 : [N]

(k1, k2)

Uniform Verification Problem

Safety Properties

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

S
q

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

S
q

Θ

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

S
q

Θ

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

S
q

Θ

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

S
p q

Θ

Non-parametrized General Invariance Rule

To show that P satisfies p, find q:

I1. Θ→ q
I2. q ∧ τ → q′ for all τ
I3. q → p

p

Why this rule does not work for parametrized systems?

Motivating Example: Mutual Exclusion Protocol

Motivating Example: Mutual Exclusion Protocol

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

0

0

tick

bag

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

0

0

tick

bag

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

1

1
0

0

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

2

2
0

0

1

1

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

3

3
0

0

1

1

2

2

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

3

3
0

0

1

1

2

2

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

3

3

0

1

1

2

2

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

Critical Section

tick

bag

3

3

1

1

2

2

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

Motivating Example: Mutual Exclusion Protocol

mutex(i, j) =̂ 
[
i 6= j → ¬(critical(i) ∧ critical(j))

]

global
Int tick := 0
Set〈Int〉 bag := ∅

procedure SetMutex
Int ticket := 0

begin
1: while true do
2: noncritical

3:

〈
ticket := tick + +
bag .add(ticket)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket)
7: end while

end procedure

General Deductive Verification

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

[Manna-Pnueli ’95]

General Deductive Verification

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

I Initiation:
ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

l1

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

l1

l2

l3

true

nondet

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

l1

l2

l3

l4

true

nondet

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

l1

l2

l3

l4

l5

true

nondet

await(bag.min = ticket[T1])

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1

l1

l2

l3

l4

l5l6

l7
false

true

nondet

await(bag.min = ticket[T1])

bag′.remove(ticket[T1])

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1 T2

l1

l2

l3

l4

l5l6

l7
false

true

nondet

await(bag.min = ticket[T1])

bag′.remove(ticket[T1])
l1

l2

l3

l4

l5l6

l7
false

true

nondet

ticket[T2]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

await(bag.min = ticket[T2])

bag′.remove(ticket[T2])

‖

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

16 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1 T2 T3

l1

l2

l3

l4

l5l6

l7
false

true

nondet

await(bag.min = ticket[T1])

bag′.remove(ticket[T1])
l1

l2

l3

l4

l5l6

l7
false

true

nondet

ticket[T2]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

await(bag.min = ticket[T2])

bag′.remove(ticket[T2])

‖

l1

l2

l3

l4

l5l6

l7

‖

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

16 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

General Deductive Verification

ticket[T1]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

1. Θ → mutex
2. mutex ∧ τ → mutex′ for each τ

T1 T2 T3

l1

l2

l3

l4

l5l6

l7
false

true

nondet

await(bag.min = ticket[T1])

bag′.remove(ticket[T1])
l1

l2

l3

l4

l5l6

l7
false

true

nondet

ticket[T2]′ := tick ∧
tick′ := tick + 1 ∧
bag′ := bag ∪ {tick}

await(bag.min = ticket[T2])

bag′.remove(ticket[T2])

‖

l1

l2

l3

l4

l5l6

l7

‖

I Initiation:

I Consecution:

ΘG : tick = 0 ∧ bag = ∅ ΘT1 : ticket [T1] = 0 ∧ pc[T1] = 1

ΘT2 : ticket [T2] = 0 ∧ pc[T2] = 1

1 VC

ΘT3 : ticket [T3] = 0 ∧ pc[T3] = 1

16 VC 24 VC

2 Threads
T1, T2

[Manna-Pnueli ’95]

Parametrized Invariance

Problem

Unbounded number of verification conditions

Parametrized Invariance

Parametrized Invariance exploits the similarities
of fully symetric systems

Our solution

Problem

I Specialized invariance proof rules

I Finite and bounded number of verification conditions

Unbounded number of verification conditions

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

Initiation

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

Self-consecution

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ
Other-consecution

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

(I) Θ(i, j) → mutex
(SC) mutex ∧ τ (i) → mutex′ forall τ

mutex ∧ τ (j) → mutex′ forall τ
(OC) mutex ∧ k 6= i ∧ k 6= j ∧ τ (k) → mutex′ forall τ , fresh k

#VC : 1 + 16 + 8 = 25

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

(I) Θ(i, j) → mutex
(SC) mutex ∧ τ (i) → mutex′ forall τ

mutex ∧ τ (j) → mutex′ forall τ
(OC) mutex ∧ k 6= i ∧ k 6= j ∧ τ (k) → mutex′ forall τ , fresh k

#VC : 1 + 16 + 8 = 25

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

(I) Θ(i, j) → mutex
(SC) mutex ∧ τ (i) → mutex′ forall τ

mutex ∧ τ (j) → mutex′ forall τ
(OC) mutex ∧ k 6= i ∧ k 6= j ∧ τ (k) → mutex′ forall τ , fresh k

#VC : 1 + 16 + 8 = 25

Parametrized Invariance (p-inv)

I Bounded number of VC, based on program and specification

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I For our example: mutex(i, j)

(I) Θ(i, j) → mutex
(SC) mutex ∧ τ (i) → mutex′ forall τ

mutex ∧ τ (j) → mutex′ forall τ
(OC) mutex ∧ k 6= i ∧ k 6= j ∧ τ (k) → mutex′ forall τ , fresh k

#VC : 1 + 16 + 8 = 25

Independently on #threads in the system

Parametrized Invariance (p-inv) is not enough

I Lets try to prove mutex using p-inv...

Parametrized Invariance (p-inv) is not enough

I Lets try to prove mutex using p-inv...

I ... transition 4 (i.e., await (bag .min == ticket)) fails

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

Critical Section

21

1
2

Parametrized Invariance (p-inv) is not enough

I Lets try to prove mutex using p-inv...

I ... transition 4 (i.e., await (bag .min == ticket)) fails

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

I Extra support is required

minticket(i) =̂ 
[
critical(i)→ min(bag) = ticket(i)

]
notsame(i, j) =̂ 

[
i 6= j ∧ active(i) ∧ active(j)→ ticket(i) 6= ticket(j)

]

Critical Section

21

1
2

Parametrized Invariance (p-inv) is not enough

I Lets try to prove mutex using p-inv...

I ... transition 4 (i.e., await (bag .min == ticket)) fails

Because mutex does not encode that the
thread in the critical section owns the minimum ticket

I Extra support is required

minticket(i) =̂ 
[
critical(i)→ min(bag) = ticket(i)

]
notsame(i, j) =̂ 

[
i 6= j ∧ active(i) ∧ active(j)→ ticket(i) 6= ticket(j)

]
We now require a new rule for invariant support

Critical Section

21

1
2

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

strenghtening

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

strenghtening
initiation

self-consecution

other-consecution

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

ψ � (A→ B) whether
[(∧

σ∈S ψσ ∧ A
)
→ B

]
Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

(S) minticket ∧ notsame
(I) Θ(i, j) → mutex

(SC)

 ∧
σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (i)
 → mutex′ ∀τ ∧

σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (j)
 → mutex′ ∀τ

(OC)

 ∧
σ∈{t1,...t5}⇀{i,j,k}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ k 6= i ∧ k 6= j ∧ τ (k)
 → mutex′ ∀τ

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

(S) minticket ∧ notsame
(I) Θ(i, j) → mutex

(SC)

 ∧
σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (i)
 → mutex′ ∀τ ∧

σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (j)
 → mutex′ ∀τ

(OC)

 ∧
σ∈{t1,...t5}⇀{i,j,k}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ k 6= i ∧ k 6= j ∧ τ (k)
 → mutex′ ∀τ

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

(S) minticket ∧ notsame
(I) Θ(i, j) → mutex

(SC)

 ∧
σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (i)
 → mutex′ ∀τ ∧

σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (j)
 → mutex′ ∀τ

(OC)

 ∧
σ∈{t1,...t5}⇀{i,j,k}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ k 6= i ∧ k 6= j ∧ τ (k)
 → mutex′ ∀τ

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

(S) minticket ∧ notsame
(I) Θ(i, j) → mutex

(SC)

 ∧
σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (i)
 → mutex′ ∀τ ∧

σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (j)
 → mutex′ ∀τ

(OC)

 ∧
σ∈{t1,...t5}⇀{i,j,k}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ k 6= i ∧ k 6= j ∧ τ (k)
 → mutex′ ∀τ

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Example: minticket and notsame to support mutex(i, j)

(S) minticket ∧ notsame
(I) Θ(i, j) → mutex

(SC)

 ∧
σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (i)
 → mutex′ ∀τ ∧

σ∈{t1,...,t5}⇀{i,j}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ τ (j)
 → mutex′ ∀τ

(OC)

 ∧
σ∈{t1,...t5}⇀{i,j,k}

 minticket(t1) ∧
notsame(t2, t3)∧
mutex(t4, t5)


σ

∧ k 6= i ∧ k 6= j ∧ τ (k)
 → mutex′ ∀τ

Instantiate the assumptions for self and others

Parametrized Invariance with Support (sp-inv)

To show that S satisfies ϕ(i). Find ψ(w) with:

(S) ψ
(I) Θ → ϕ

(SC) ψ,ϕ � τ (i) → ϕ′ forall τ

(OC) ψ,ϕ � k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

Instantiate the assumptions for self and others

Sometimes we have invariant circular dependency

Problem

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

initiation

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

initiation

self-consecution

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

initiation

self-consecution

others-consecution

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

I A generalization of g-inv is a proof graph

I1 I4

I3

I2

initiation

self-consecution

others-consecution

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

I A generalization of g-inv is a proof graph

I1 I4

I3

I2

I an inductive invariant, or
I has an incident edge and all VCs are valid

Every node is invariant if every node is either:
Theorem

initiation

self-consecution

others-consecution

Parametrized Invariance with Graph Support (g-inv)

To show that S satisfies ϕi(v) ∧ ϕj(w):

(I) Θ → ϕi ∧ ϕj
(SCi) ϕi, ϕj � τ (t) → ϕ′

i forall τ , forall t ∈ v
(SCj) ϕi, ϕj � τ (t) → ϕ′

j forall τ , forall t ∈ w
(OCi) ϕi, ϕj �

∧
x∈v

k 6= x ∧ τ (k) → ϕ′
i forall τ , fresh k /∈ v

(OCj) ϕi, ϕj �
∧
x∈w

k 6= x ∧ τ (k) → ϕ′
j forall τ , fresh k /∈ w

ϕi ∧ ϕj

I an inductive invariant, or
I has an incident edge and all VCs are valid

Every node is invariant if every node is either:
Theorem

initiation

self-consecution

others-consecution

mutex

activelow

minticket notsame

Our Contributions

That’s for safety... what about liveness?

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

1

2

3 Invariant Generation with Self-refelction
Automatic parametrized invariant generation using off-the-shelf sequential absint

4

5

6 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: A Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: A Decidable Family for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

C

B

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Property

LTL (,,U ,. . .)

ϕ

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

LTL (,,U ,. . .)

ϕ

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

ϕ(k)

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

� ϕ(k)

?

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

ϕ(k)

Diagram

D

Verification of Concurrent Data-structures

Concurrent DataStructure

Most General Client

...

P [N] : P (1)|| · · · ||P (N)

Our verification approach

Liveness
Property

ϕ(k)

Diagram

D� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Satisfaction
(Model Checking)

The Need of Parametrized Diagrams

System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket T2 has min ticket

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T2 has min ticket

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

global
int avail := 0
set〈int, tid〉 bag := ∅

procedure SetMutex
int ticket

begin
1: loop
2: noncritical

3:

〈
ticket := avail + +
bag .add(ticket ,myId)

〉
4: await (bag .min == ticket)
5: critical
6: bag .remove(ticket ,myId)
7: end loop

end procedure

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)||SetMutex(T3)

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

T3 has min ticket

T3 enters
critical section

T3 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)||SetMutex(T3)

The Need of Parametrized Diagrams

T1 not interested

T1 interested

T1 has min ticket

T1 enters
critical section

T1 leaves
critical section

T2 has min ticket

T2 enters
critical section

T2 leaves
critical section

T3 has min ticket

T3 enters
critical section

T3 leaves
critical section

Spec: 
(
pcT1

= 3→pcT1
= 5
)System: SetMutex(T1)||SetMutex(T2)||SetMutex(T3)

Solution: Parametrized Verification Diagrams

Problem

I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

Solution: Parametrized Verification Diagrams

Parametrized Verification Diagrams exploit
symmetry

Our solution

Problem

I Not a single diagram for arbitrary number of threads

I Unbounded number of verification conditions

I Unique diagram for arbitrary number of threads

I Finite and bounded number of verification conditions

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

Nodes

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

Initial Node

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

Edges

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

µ(a) : pc(i) = 1

µ(b) : pc(i) = 2 ∧ isMin(i)

Node labeling

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

τ3(i)

Edge labeling

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

a

b

Ranking functions

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

i

Parametrized VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

i

aM

bM

a1

b1

· · ·
represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

i

τ1[i]

aM

bM

a1

b1

· · ·
represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

i

τ1[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·
represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·
represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

i

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

τ2[1] τ2[M]

represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

dMd1 · · ·

τ2[1] τ2[M]

represents

For M threads

· · ·

Parametrized VD General VD

Parametrized Verification Diagrams: Sketch

I pvds are an extension of gvd

I Includes de notion of boxes

a

b

c

d
i j

τ1[i]

τ2[i]

aM

bM

τ1[M]

a1

b1

τ1[1]

· · ·

c

dMd1 · · ·

τ2[1] τ2[M]

represents

For M threads

· · ·

A pvd abstracts all instantiations of a parametric system

Parametrized VD General VD

Verification Conditions for Parametrized Diagrams

...

P [N] : P (1)|| · · · ||P (N)

ϕ(k)

PropertyDiagram

D� �

Verification Conditions:
I Initiation
I Consecution
I Acceptance
I Fairness

Verification Conditions for Parametrized Diagrams

I Initiation Θ→ µ(N0)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution: For every n ∈ N and τ ∈ T ,∨
n→m

µ(n) ∧ τ(i) → µ(m′)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution: For every n ∈ N and τ ∈ T ,∨
n→m

µ(n) ∧ τ(i) → µ(m′)

∨
n→m

µ(n) ∧ τ(i) → µ(m′)

Self-Consecution

for all i ∈ Voc(n,m)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution: For every n ∈ N and τ ∈ T ,∨
n→m

µ(n) ∧ τ(i) → µ(m′)

∨
n→m

µ(n) ∧ τ(i) → µ(m′)

Self-Consecution

for all i ∈ Voc(n,m)

∨
n→m

µ(n) ∧ τ(j) ∧ j 6= i → µ(m′)

Others-Consecution

for fresh j /∈ Voc(n,m)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution: For every n ∈ N and τ ∈ T ,∨
n→m

µ(n) ∧ τ(i) → µ(m′)

∨
n→m

µ(n) ∧ τ(i) → µ(m′)

Self-Consecution

for all i ∈ Voc(n,m)

∨
n→m

µ(n) ∧ τ(j) ∧ j 6= i → µ(m′)

Others-Consecution

for fresh j /∈ Voc(n,m)

|T | · |V|
How many VCs?

|T |

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance: For every (B,G, δ) and all edges n→e m:

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance: For every (B,G, δ) and all edges n→e m:

(µ(n) ∧ τ(i) ∧ µ(m′))→ δ(n) > δ(m)

Self-Acceptance (for all i ∈ Voc(n,m))

if e ∈ B

(µ(n) ∧ τ(i) ∧ µ(m′))→ δ(n) ≥ δ(m) if e ∈ E \ (B ∪G)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance: For every (B,G, δ) and all edges n→e m:

(µ(n) ∧ τ(i) ∧ µ(m′))→ δ(n) > δ(m)

Self-Acceptance (for all i ∈ Voc(n,m))

if e ∈ B

(µ(n) ∧ τ(i) ∧ µ(m′))→ δ(n) ≥ δ(m) if e ∈ E \ (B ∪G)

(µ(n) ∧ τ(j) ∧ i 6= j ∧ µ(m′))→ δ(n) > δ(m)

Others-Acceptance (for fresh i /∈ Voc(n,m))

if e ∈ B

(µ(n) ∧ τ(j) ∧ i 6= j ∧ µ(m′))→ δ(n) ≥ δ(m) if e ∈ E \ (B ∪G)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance

I Fairness For each n→e m with η(e) = τ(i)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance

I Fairness For each n→e m with η(e) = τ(i)

µ(n)→ En(τ(i))

µ(n) ∧ τ(i)→ µ(m′)

Verification Conditions for Parametrized Diagrams

I Initiation

I Consecution

I Acceptance

I Fairness

I Satisfaction

µ(n)→ f(n)

ModelCheck(D � ϕ)

Mutual Exclusion Algorithm (revisited)

ϕ(k) = (pc(k) = 3→pc(k) = 5)

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

ϕ(k) = (pc(k) = 3→pc(k) = 5)

T1

T1

T1

T1

T1

T2

T2

T2

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

ϕ(k) = (pc(k) = 3→pc(k) = 5)

T2

T2

T2

k

k

k

k

k

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

ϕ(k) = (pc(k) = 3→pc(k) = 5)

t

k

k

k

k

k

t

t

t

τ3(k)

τ3(k)

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

ϕ(k) = (pc(k) = 3→pc(k) = 5)

t minTid(bag) = t ∧
t 6= k ∧ pc(k) = 4

k

k

k

k

k

t

t

t

τ3(k)

τ3(k)

Mutual Exclusion Algorithm (revisited)

not interested

interested

has min ticket

enters
critical section

leaves
critical section

has min ticket

enters
critical section

leaves
critical section

ϕ(k) = (pc(k) = 3→pc(k) = 5)

t minTid(bag) = t ∧
t 6= k ∧ pc(k) = 4

minTid(bag) = k

k

k

k

k

k

t

t

t

τ3(k)

τ3(k)

Mutual Exclusion Algorithm (revisited)

ϕ(k) = (pc(k) = 3→pc(k) = 5)

t minTid(bag) = t ∧
t 6= k ∧ pc(k) = 4

minTid(bag) = k

pc(k) = 1, 2, 7

pc(k) = 3

pc(k) = 4

pc(k) = 5

pc(k) = 6

pc(t) = 4

pc(t) = 5

pc(t) = 6

τ4(k)

τ5(k)

τ4(t)

τ5(t)

τ6(t)

τ6(t)

τ3(k)

τ3(k)

Mutual Exclusion Algorithm (revisited)

ϕ(k) = (pc(k) = 3→pc(k) = 5)

t minTid(bag) = t ∧
t 6= k ∧ pc(k) = 4

minTid(bag) = k

pc(k) = 1, 2, 7

pc(k) = 3

pc(k) = 4

pc(k) = 5

pc(k) = 6

pc(t) = 4

pc(t) = 5

pc(t) = 6

τ4(k)

τ5(k)

τ4(t)

τ5(t)

τ6(t)

τ6(t)

B, G δ : lower(bag , ticket(k))

τ3(k)

τ3(k)

Mutual Exclusion Algorithm (revisited)

ϕ(k) = (→)p q

p

q

true

true

true

true

true

true

Our Contributions

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

1

2

3 Invariant Generation using Self-reflection
Automatic parametrized invariant generation using off-the-shelf sequential absint

4

5

6 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: A Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: A Decidable Family for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

C

B

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

A

LEAP: Structure

LEAP

LEAP: Structure

Program

LEAP

LEAP: Structure

Program Program Parser

LEAP

LEAP: Structure

Program Program Parser Transition System Generator

LEAP

LEAP: Structure

S2

Program

Specs

Program Parser Transition System Generator

LEAP

S1

S3

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

Proof
graph

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

Proof
graph

Graph Parser

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

Proof
graph

Graph Parser

DPVD

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

LEAP

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

Pos Num

LEAP

Decision Procedures

ListsSkiplists

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

Pos Num

LEAP

Decision Procedures

ListsSkiplists

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

Yices Z3 CVC4

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

Pos Num

LEAP

Decision Procedures

ListsSkiplists

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

vc1 X
Xvc2

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

Yices Z3 CVC4

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

Pos Num

LEAP

Decision Procedures

ListsSkiplists

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

vc1 X
Xvc2

vc3 X

counter example

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

Yices Z3 CVC4

LEAP: Structure

S2

Program

Specs

Program Parser

Formula Parser

Transition System Generator

Pos Num

LEAP

Decision Procedures

ListsSkiplists

S1

S3

Proof
graph

Graph Parser

DPVD Diagram Parser

vc1 X
Xvc2

vc3 X

vc4 X
vc5 X

counter example

counter example

vc6 X
Xvc7

VC Generator

Parametrized
Invariance

Parametrized
Verification
Diagrams

Yices Z3 CVC4

Verification using LEAP

We use LEAP to verify temporal, structural and functional properties

I Mutual exclusion protocols

I Concurrent lock-coupling lists

I Concurrent lock-based queues

I Lock-free stacks

I Lock-free queues

I Skiplists with 2,3,4,5,.. levels

I Skiplists with unbounded levels (including KDE implementation)

LEAP and examples available online at

software.imdea.org/leap

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

LEAP analysis time
remains insignificant

LEAP: Some Experimental Results (safety)

formula #solved vc Brute Heurist. DP time(s.) LEAP
idx #vc pos dp time(s.) time(s.) slowest average time(s.)

1 list 0 61 38 23 ∞ 18.67 11.90 0.30 0.20
2 order 1 121 62 59 998.35 1.12 0.03 0.01 0.47
3 lock 1 121 76 45 778.15 0.47 0.02 0.01 0.18
4 next 1 121 60 61 ∞ 2.11 0.61 0.01 0.59
5 region 1 121 95 26 ∞ 22.58 18.17 0.18 0.23
6 disj 2 181 177 4 121.74 0.19 0.01 0.01 0.12

7 funSchLin 1 121 97 24 ∞ 6.29 3.04 0.05 0.08
8 funSchIns 1 121 93 28 ∞ 4.15 1.91 0.03 0.08
9 funSchRem 1 121 93 28 ∞ 5.40 2.60 0.04 0.10

10 funSearch 1 208 198 10 ∞ 3.54 1.57 0.01 0.34
11 funInsert 1 208 200 8 ∞ 0.50 0.01 0.01 0.22
12 funRemove 1 208 200 8 ∞ 1.41 0.95 0.01 0.24

13 skiplist3 0 154 92 62 ∞ 1221.97 776.45 15.27 0.45
14 region3 0 124 97 27 ∞ 27.50 17.36 0.34 0.58
15 next3 0 84 65 19 ∞ 0.67 0.09 0.01 0.20
16 order3 0 84 59 25 ∞ 9.66 7.80 0.10 1.31

17 skiplist 0 560 532 28 ∞ 19.79 5.40 0.24 0.15
18 region 0 1583 1527 56 ∞ 44.28 22.66 0.54 1.35
19 next 0 1899 1869 30 ∞ 3.19 0.32 0.02 1.59
20 order 0 2531 2474 57 ∞ 11.19 2.35 0.84 6.75

21 mutex 2 28 26 2 0.32 0.01 0.01 0.01 0.01
22 minticket 1 19 18 1 0.04 0.01 0.01 0.01 0.01
23 notsame 2 28 26 2 0.13 0.03 0.01 0.01 0.01

24 mutexS 2 28 26 2 0.44 0.04 0.01 0.01 0.01
25 minticketS 1 19 18 1 0.31 0.01 0.01 0.01 0.01
26 notsameS 2 28 26 2 0.14 0.02 0.01 0.01 0.01

Decision procedures perform well...
but still room for improvements

LEAP: Some Experimental Results (liveness)

#VC #solved VC single VC time(s.) DP Leap
pos num slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01
Consecution 153 144 9 2.66 0.03 4.22 0.06
Acceptance 195 132 63 1.46 0.08 15.28 0.05

Fairness 24 20 4 0.03 0.01 0.10 0.02

#VC #solved VC single VC time(s.) DP Leap
pos TLL slowest average time(s) time(s)

Initiation 1 0 1 0.01 0.01 0.01 0.01
Consecution 1550 1343 207 3.80 0.05 78.12 3.42
Acceptance 5404 4352 1052 191.61 0.12 647.04 1.61

Fairness 48 20 28 0.42 0.16 7.82 0.14

MinTicket (progress):

Concurrent List (termination):

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

ACTA

2015

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

SAS

2012

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

SAS

2012

ICFEM

2010

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

SAS

2012

ICFEM

2010

NFM

2011

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

SAS

2012

ICFEM

2010

NFM

2011

ATVA

2014

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Published Results

Deductive Verification Techniques for Parametrized Systems

Decision Procedures for Complex Data Structures

Implementation and Evaluation of our Framework

A

B

C

1

2

3

Parametrized Invariance
Deductive proof rules for concurrent parametrized invariants

Invariant Generation using Abstract Interpretation
Automatic parametrized invariant generation using off-the-shelf sequential absint

5

6

7 TSL: A Decidable Theory for Skiplists with Arbitrary Levels
Theory and decision procedure for skiplists with unbounded many levels

TL3: Decidable Theory for Concurrent Lists
A Theory and decision procedure for concurrent data structures of the shape of a list

TSLK: Decidable Theories for Concurrent Bounded Skiplists
Theories and decision procedures for concurrent skiplists of at most K levels

TIME

2014

ACTA

2015

SAS

2012

ICFEM

2010

NFM

2011

ATVA

2014

CAV

2014

Parametrized Verification Diagrams
Diagram based verification for concurrent parametrized liveness properties

Conclusions

I A novel deductive framework for parametrized verification

I Designed for concurrent data structures

I Suitable for safety and liveness temporal properties

I Constructed specialized theories and decision procedures

I Implemented a tool with our verification framework

I We verified various programs and concurrent data structures

I We studied automatic generation of parametrized invariants

Future Work and Open Questions

I Relax symmetry and study process topologies

I Better invariant generation: for more data domains

I More decision procedures for more datatypes

I Implement a generic Nelson-Oppen for faster decision procedures

I Add support for real world programming languages

I Use theorem provers in combination with SMT solvers, and
generate full formal proofs

I Beyond interleaving semantics:
Weak memory models and distributed algorithms

Future Work

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Relax symmetry and study process topologies

Future Work

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Relax symmetry and study process topologies

Future Work

To show that S satisfies ϕ(i):

(I) Θ → ϕ
(SC) ϕ ∧ τ (i) → ϕ′ forall τ
(OC) ϕ ∧ k 6= i ∧ τ (k) → ϕ′ forall τ , fresh k

ϕ

I Relax symmetry and study process topologies

(OC<) ϕ ∧ k < i ∧ τ (k) → ϕ′ forall τ , fresh k
(OC>) ϕ ∧ k > i ∧ τ (k) → ϕ′ forall τ , fresh k

Thanks!

